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Abstract  

Artificial intelligence is growing more valuable and powerful every year and will            
soon dominate the internet. Visionaries like Vernor Vinge and Ray Kurzweil have            
predicted that a “technological singularity” will occur during this century. The           
SingularityNET platform brings blockchain and AI together to create a new AI            
fabric that delivers superior practical AI functionality today while moving toward           
the fulfillment of Singularitarian artificial general intelligence visions.  

Today’s AI tools are fragmented by a closed development environment. Most           
are developed by one company and perform one extremely narrow task, and there             
is no straightforward, standard way to plug two tools together. SingularityNET           
aims to become the leading protocol for networking AI and machine learning            
tools to form highly effective applications across vertical markets and ultimately           
generate coordinated artificial general intelligence.  

Most AI research today is controlled by a handful of corporations—those with            
the resources to fund development. Independent developers of AI tools have no            
readily available way to monetize their creations. Usually, their most lucrative           
option is to sell their tool to one of the big tech companies, leading to control of                 
the technology becoming even more concentrated. SingularityNET’s open-source        
protocol and collection of smart contracts are designed to address these problems.            
Developers can launch their AI tools on the network, where they can interoperate             
with other AIs and with paying users.  

Not only does the SingularityNET platform give developers a commercial          
launchpad (much like app stores give mobile app developers an easy path to             
market), it also allows the AIs to interoperate, creating a more synergistic, broadly             
capable intelligence. For example, if a text-to-speech AI and an Italian-to-English           
translation AI were both on the network, then the network as a whole would be               
capable of using Italian text to produce English speech.  

Within this framework, AI transforms from a corporate asset to a global            
commons; anyone can access AI tech or become a stakeholder in its development.             
Also, anyone can add an AI/machine learning service to SingularityNET for use            
by the network and receive network payment tokens in exchange.  

SingularityNET is backed by the SingularityNET Foundation (described in         
section 1.5), which believes that the benefits of AI should not accrue only to a               
small set of powerful institutions, but rather should be shared by all. A key goal               
of SingularityNET is ensuring that the technology is benevolent by human           
standards and that the network is designed to incentivize and reward beneficial            
players. This is critical given the explicit aspiration of the project—alongside           
shorter-term practical and commercial goals—to play a central role in launching           
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the technological singularity as foreseen by Vinge, Kurzweil, and others by           
catalyzing the emergence and economic pervasiveness of self-modifying,        
self-improving, self-understanding artificial general intelligence.  

The SingularityNET platform, AI network, and ecosystem are works in          
progress, and are intended to remain so, the very essence of the singularity being              
rapid change. In this spirit, what you are reading is a substantial revision of              
SingularityNET’s first whitepaper. The first version was written in fall 2017           
before the network’s initial token generation event, whereas this version was           
written in February 2019 and reflects what has been learned and built during the              
interim.  
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1. Vision  
 

1.1 Inspiration  
 
The inevitability of a technological singularity is increasingly accepted throughout the           

technology and business worlds. Knowledgeable people are realizing that the next few decades             
will see a transition to a new society and economy in which machine intelligence is the dominant                 
factor. For this to occur, swarms of machine and organic intelligences must network together to               
produce emergent “global brain” dynamics of unprecedented complexity and sophistication with           
power and flexibility none alone would have.   1

Markets display elements of cognitive synergy—agents in an economy each pursue their own             
relatively simple goals, but patterns with higher-order goals emerge from their interactions.            
SingularityNET is not only a collection of AIs, it is a market. It is designed to harness                 
self-organizing swarm intelligence to create a whole greater than the sum of its parts. Blockchain               
allows us to program economic rules in a digital environment and AI software to seamlessly               
interact with them.  

The path to creating a positive “global brain” is challenging. A technological singularity             
could have unprecedented benefits but also poses unprecedented risk. The popular press is full of               
dire warnings about the dangers of artificial general intelligence.  

Among the challenges is the current set of protocols for collective action; in many respects,               
today’s financial mechanisms and institutions would give us a risky ride to the singularity. New,               
more flexible, open, and rapidly adaptive economic structures and dynamics are needed.   2

Blockchain, with its natively digital money, is a powerful tool for managing transactions in              
an economy dominated by machine intelligence. However, blockchain is just a tool; there are              3

important decisions to be made about how to use it. SingularityNET is a blockchain-based              
framework designed to serve the needs of AI agents as they interact with each other and with                 
external customers. At its core, SingularityNET is a set of smart contract templates that AI               
agents can use to request that AI work be done, to exchange data, and to supply the results of AI                    
work. 

This framework is a network that meshes disparate elements into a collective intelligence,             
much like the different areas of the brain—each with its own speciality—mesh together. It is               
critical that this network be designed with positive principles in mind: 

● Democratic governance on specific issues—if the community governs the system, then           
the system will tend to act for the benefit of the community  

1 Damien Broderick, The Spike (Tor Books, 1997); Ray Kurzweil, The Singularity Is Near (2006); Vernor Vinge,                 
“The Coming Technological Singularity,” Whole Earth Review 81 (1993): 88–95; Ben Goertzel, “Human-level             
Artificial General Intelligence and the Possibility of a Technological Singularity: A Reaction to Ray Kurzweil’s               
‘The Singularity Is Near,’ and McDermott’s Critique of Kurzweil,” Artificial Intelligence 171, no. 18 (2007):               
1161–73. 
2 Ben Goertzel, Ted Goertzel, and Zarathustra Goertzel, “The Global Brain and the Emerging Economy of                
Abundance: Mutualism, Open Collaboration, Exchange Networks and the Automated Commons,” Technological           
Forecasting and Social Change 114C (2016): 65–73. 2016, http://goertzel.org/OpenCollaboration.pdf.  
3 John Clippinger and David Bollier, From Bitcoin to Burning Man and Beyond (Off the Common Books, 2014).  
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● Encouragement that prompts innovative new agents to enter the network, and creation of             
the conditions necessary for agents to act in a manner that feeds the collective              
intelligence 

● Direction of a significant percentage of the network’s efforts toward causes of broad             
benefit  

SingularityNET has been designed to meet these requirements by 

● delivering intelligence services to corporations, other organizations, and individuals;  

● fostering the emergence of increasingly powerful distributed general intelligence; and 

● deploying artificial intelligence for ever-increasing benefit to as many humans and other            
sentient beings as possible.  

 
SingularityNET is designed both to be highly valuable now and to lay the groundwork for the                

emergence of a self-modifying, decentralized “artificial cognitive organism” with the eventual           
potential for general intelligence and beneficial ethical characteristics beyond the human level. It             
is a practical design inspired by long theoretical thinking and prototyping by our founders              
regarding artificial general intelligence,  open-ended intelligence,  the global brain,  and more.  4 5 6

 

1.2 Acute Market Needs Addressed  
 
SingularityNET meets an acute and accelerating market need. In the current economic and             

technological context, every business needs AI, but off-the-shelf AIs will rarely match a             
business’s needs. Only tech giants can hire armies of developers to build custom AIs, and even                
they have a hard time hiring enough AI experts to meet demand. SingularityNET provides an               
automated process that enables any business to connect existing AI tools to build the solution it                
needs. It optimizes for accessibility and customizability and by its nature reduces the             
reduplication of effort involved in proprietary development, making development more efficient.  

Many state-of-the-art AI tools exist only in GitHub repositories created by graduate students             
or independent researchers. The latest algorithms for image and video analysis, machine            
translation, automated theorem proving, bioinformatics data analysis, etc. are typically available           
on Github, but the friction inherent in installing, configuring, and running them limits their use.               
Many remain little more than demos. Most AI developers are academics, not businesspeople, and              
have no easily accessible marketplace to turn to in order to monetize their clever AI code. As a                  
result, the AI in real-world products tends to lag months to years behind the code.               

4 Ben Goertzel, The AGI Revolution (Humanity+ Press, 2016). 
5 David Weaver Weinbaum and Viktoras Veitas, “Open-ended Intelligence,” in International Conference on             
Artificial General Intelligence (Springer, 2016): 43–52, https://arxiv.org/abs/1505.06366. 
6 F. Heylighen, “The Global Superorganism: “An Evolutionary Cybernetic Model of the Emerging Network              
Society,” Social Evolution and History 6, no. 1 (2007). 
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SingularityNET is a launchpad where developers can quickly get their AI models and algorithms              
into real-world applications. 

Machine learning tools also require datasets of sufficient size. Creating and managing such             
large datasets are beyond the means and capabilities of most AI developers, and the closed               
development model that currently prevails makes it hard for developers to share datasets.  

 

 

Figure 1. Major roadblocks remain 

 

SingularityNET connects these AI tools and datasets to the marketplace, making them accessible             
to end users and developers and giving developers a way to monetize their creations. It is a                 
sharing-economy marketplace for AI, allowing these tools to share data and abilities in order to               
democratize access to the benefits of AI.  

In accordance with these goals, SingularityNET will be an open network. Anyone can insert              
an AI Agent as long as it shares information according to the SingularityNET API and               
accepts/disburses payment according to SingularityNET’s economic logic. New AI Agents will           
come from AI developers who want access to SingularityNET’s marketplace and who want to              
boost their AI agent’s intelligence by linking it to other AIs in a cooperative network.  

Like Uber and Airbnb, we have identified a large unexploited resource and a large market in                
need of that resource, and we are launching a tool to connect the two. The unexploited resource                 
is AI algorithms and software on GitHub and elsewhere, and the market is the 99 percent of                 
businesses that cannot afford a team of AI experts.  
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But in SingularityNET we also have a key added factor not present in these analogous cases:                
the apartments in AirBnB’s network do not combine to become meta-apartments, nor does             
Uber’s network create meta-cars, but AIs in SingularityNET’s network come together to form             
meta-AIs whose intelligence is more than the sums of their parts. An unprecedented combination              
of powerful network effects is here, waiting to kick in once the network of AIs and associated                 
human communities reach sufficient size and maturity. 

 

1.3 A Robust and Adaptive Software Architecture  
 

In computer science terms, SingularityNET is a distributed computing architecture for making            
new kinds of smart contracts to facilitate market interactions with AI and machine learning tools.               
The following design principles are incorporated throughout the design: 

● Interoperability. The network will be able to interface with multiple blockchains. 

● Data sovereignty and privacy. The network includes user-side controls for sharing           
personal data. Users remain in control of their data and can share it with the network via                 
smart contracts.  

● Modularity. Flexible network capabilities make it possible to create custom topologies,           
AI Agent collaborations of arbitrary complexity, and failure recovery methods.  

● Scalability. SingularityNET will securely host both private and public contracts, allowing           
more scalable and resilient applications to be built with near-zero transaction costs.  

 

 

Figure 2. Cognitive synergy between AI Agents 
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SingularityNET Agents can run in the cloud and on phones, robots, and embedded devices.  
 

1.4 A Decentralized, Self-Organizing Cooperative  
 

One can think about SingularityNET as a “decentralized self-organizing cooperative.” This           
concept is similar to to the better-known “decentralized autonomous organization” (“DAO”) but            
different in that a foundation will provide high-level oversight of SingularityNET. Our intent is              
that over time, the network will evolve into a truly decentralized and autonomous organization.              
This sort of organization will differ from an ordinary corporation by, above all, its openness. 

SingularityNET’s collection of smart contracts includes contracts to be used by external,            
non-AI Agents who wish to obtain AI services from Agents in the network. Anyone can create a                 
node (an AI Agent), put it online (running on a server, home computer, robot, or embedded                
device), and enter it into the network so that it can request and/or fulfill AI tasks in interaction                  
with other nodes and engage in economic transactions.  

 

Figure 3. Example of a “circle of exchange” among AI Agents  

 

Services on SingularityNET can be accessed using the AGI token. Token holders can use their               
tokens to purchase services in the marketplace. In the future, tokens may also bestow voting               
rights in the network’s democratic governance system. 

During the initial phases of the network’s operation, the core parameters of the network will               
be governed by a nonprofit foundation which will be monitored and advised by a supervisory               
board. The foundation will operate the network and exercise oversight to prevent abuse and              
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hostile behavior while respecting the designed-into-the-system privacy of inter-agent         
interactions.  

However, even in the earliest stages, activity on SingularityNET will be self-organized. For             
example, Agents will be free to create new AI Agents, insert them into the network, and transact                 
freely and permissionlessly with each other.  

 

 

Figure 4. SingularityNET aims to foster intelligent systems and maximize their positive impact 
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SingularityNET aims to foster increasingly intelligent systems while maximizing the positive           
impact of these systems. The economic logic is designed to generate an intelligent global              
economy that pursues maximum benefits for all people and all life. Through a combination of               
powerful AI Agents, human decision-making, and benefit-maximizing game rules,         
SingularityNET will accelerate the development of a global supermind, helping humanity evolve            
into a more advanced, intelligent, beneficial, and connected mode of being.  

In short, SingularityNET is an innovative economic mechanism designed to catalyze human            
and machine intelligence to move toward a new form of ethically beneficial self-organizing             
intelligence. Its global network of artificially intelligent agents will provide valuable AI services             
to anyone while, in the process, it self-organizes toward loftier goals. It is plausible that a highly                 
successful SingularityNET will play a major role in the transition of humanity to a positive               
technological singularity. 

The growth of SingularityNET will foster advances not only in practical narrow AI, but also               
in the general theory and practice of beneficial artificial general intelligence, in the design and               
analysis of structures for ethically intelligent economies, and in the continuous refining of means              
to conceptualize and estimate “benefit” and “greater good.” 
 

1.5 The SingularityNET Foundation  
 

The non-profit SingularityNET Foundation, incorporated in the Netherlands, is responsible for           
building, supervising, and accelerating the growth of the SingularityNET network and           
marketplace.  

During the initial phases of network operation, most major governance decisions will be             
made democratically by token holders, with the Foundation providing some high-level           
stewardship and practical day-to-day management. As the network evolves, there is potential for             
transition to a fully self-regulating Decentralized Autonomous Organization, and the network’s           
technical specifications and governance methodology are designed to support this. 

The SingularityNET Foundation was formed in late 2017 and early 2018 by the following              
key groups:  

● The OpenCog Foundation, stewards of OpenCog, the leading open-source artificial          
general intelligence platform  

● Hanson Robotics, creators of the world’s most lifelike humanoid robots  

● Vulpem, a blockchain software engineering consultancy responsible for back-end work          
on a number of successfully designed private and public blockchains, cryptocurrencies,           
and decentralized applications  

● Artificial intelligence software consultancy Novamente LLC, which has provided custom          
AI solutions for corporations and government agencies since 2001  
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Creating a successful combination of sophisticated initial AI Agents, a flourishing community of             
AI Agent developers, and a rich ecosystem of customers at varying levels of sophistication is a                
huge undertaking. Fortunately, the founding team brought to the project significant experience as             
well as a large body of open-source code to help lay the foundation for the SingularityNET                
global brain network. But the vision requires the active participation of a grassroots community              
seeded by the founding team, both to put software on the network and to democratize               
governance. 
 

2.  The SingularityNET Platform 
 

Realization of the SingularityNET vision requires a well-designed, efficient, and flexible           
underlying software platform that provides the protocols and tools necessary for AI agents to              
integrate into the network. Creating a platform that fully embodies the SingularityNET concept             
will be a medium-term effort, but significant progress has been made since development started              
in August 2017.  

This section describes in moderate depth the software architecture for the beta version of the               
platform released in February 2019 and then makes some higher-level observations about            
features and improvements to be added post-beta. 

 

2.1 Overview of the SingularityNET Beta Platform 
 

The SingularityNET platform contains a number of critical components that work together to             
enable a decentralized network of AI services to flourish. The core components include many              
architectural components that allow for a functional, scalable, and extensible system. We arrived             
at this architecture through a careful process guided by a few key decisions governing blockchain               
interactions, AI service integration, and abstraction and by the goal of building an AI              
marketplace that is both open and compliant with regulatory and legal requirements. 

First, we made the conscious choice to minimize our dependence on our current blockchain,              
Ethereum. Both conceptual and practical issues motivated this decision. Conceptually, we desire            
to be blockchain-agnostic and will consider building our own consensus algorithm based on             
reputation. The speed, reliability, and costs of Ethereum blockchain interactions dictate that any             
scalable system built on top of it must minimize gas costs and the delays introduced by                
block-mining time. These decisions are reflected in our use of tools to abstract away all               
blockchain interactions (the daemon, CLI, and SDK) and in our use of a multi-party escrow               
contract and atomic unidirectional channels for payments. 

Second, on AI services integration, we wanted to abstract away as much of the network as                
possible, from an AI developer's perspective, in order to reduce the learning curve and minimize               
the overhead associated with providing AI services via the network. Moreover, we wanted to              
achieve this abstraction with a single flexible tool that also helps us provide scalability,              
robustness, and distribution and management features. This is achieved by the daemon, which is              
a sidecar proxy used to communicate with services and the network and which will soon also                
allow services to very easily find and call other services.  
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Finally, to make our marketplace compliant with regulations without compromising on           
openness, we implemented a fully decentralized registry of AI services available on the platform.              
The AI marketplace supplements that registry (a smart contract) with a centralized source for              
which services are curated; that is, they have gone through a due-diligence process covering the               
service owners and the nature of the service being offered. 

The diagram below depicts the key components along with auxiliary components and their             
roles. 

 

 

Figure 5. The key components of our platform  

 

For a developer who wants to offer an AI service over the network, the most crucial component                 
is the SingularityNET daemon, an adapter and proxy that abstracts away interactions will all              
other components. The daemon handles interactions with smart contracts and payments, takes            
care of client request validation, and does other useful tasks, allowing AI developers to focus               
almost exclusively on the AI-related aspects of their server-side software and services. The             
daemon is a sidecar proxy, so one daemon instance is deployed next to each AI service instance. 

For end users who want to purchase access to the AI services available in the platform, the                 
most important component is the Marketplace DApp, through which they can search and             
browse a collection of curated services (i.e., services approved by the SingularityNET            
Foundation as relevant and high quality and whose owners have signed user and data-privacy              
agreements) for a large and ever-growing variety of AI tasks. The Marketplace DApp also              
handles payment for services (through MetaMask integration) and service ratings. 

For application developers who want to use the network’s intelligence in their applications,             
the key component is the SingularityNET SDK, which automatically compiles client-side code            

14 



 

for interacting with the platform and with specific services, allowing service requests to be coded               
in a straightforward way and supporting payment and interactions with the blockchain. 

The Ethereum blockchain is used to host two critical smart contracts: the Registry and the               
Multi-Party Escrow. 

The Registry is where AI service providers register on the platform, which involves             
providing text descriptions and tags to allow users to discover their service, pricing information,              
and information such as gRPC models and endpoint locations to allow users to call their services. 

The Multi-Party Escrow contract handles payments through escrow accounts for each user            
(end users and applications) coupled with atomic unidirectional channels for faster and cheaper             
transactions. 

Those are the core components of the platform. Two key support components are also worth               
mentioning:  

● The AI developer– and owner-oriented CLI (command-line package) provides command          
line APIs for a number of crucial service developer and service owner tasks: registering              
and managing identities, publishing services, updating registration information, notifying         
the platform of new endpoints, managing payment channels and balances, and calling            
services.  

● The Request for AI Portal (RFAI) is a DApp through which end users and application               
developers can request specific AI services they would like added to the network and              
stake AGI tokens as a reward for high-quality solutions. 

 

2.2 The SingularityNET Daemon and Wrapping Services 
 

The daemon is the adapter that a service can use to interface with the SingularityNET platform.                
In software architecture lingo, the daemon is a sidecar proxy, —a process deployed next to a               7

core application (the AI service, in this case) to abstract away some architectural concerns such               
as logging and configuration as well as entire platform aspects, such as the interaction with smart                
contracts or even the decision to use the Ethereum blockchain. 

The two key abstraction responsibilities of the daemon are payments and request translation.             
In order to authorize payments, the daemon interacts with the Multi-Party Escrow contract.             
Before invoking a service through SingularityNET, a consumer must have 

1. funded the Multi-Party Escrow contract (see section on payments below) and  

2. opened a payment channel with the recipient as specified by the service definition.  

With each invocation the daemon checks that 

1. the signature is authentic, 

2. the payment channel has sufficient funds, and 

7 https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar. 
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3. the payment channel expiry is beyond a specified threshold (to ensure that the developer              
can claim the accrued funds). 

 
After these successful checks, the request is proxied to the service. The daemon also keeps track                
of payment states of different clients.  
 

 
Figure 6. The SingularityNET daemon 

 
Once the daemon has validated requests, it translates them into the format expected by the AI                
service. The daemon exposes a gRPC, so all requests are based on gRPC and protocol buffers,                8 9

but it can translate requests to a few different formats, as expected by the service: in addition to                  
gRPC/Protobuf, JSON-RPC and process fork–based services (executables to be executed on a            
per-call basis with the input parameters on standard input) are supported. This translation enables              
one consistent protocol to be used to communicate with any service on SingularityNET. The              
daemon and CLI also use gRPC and Protobuf for communication. 

One can deploy multiple instances of an AI service. Each instance will have its own sidecar                
daemon, and all daemons will be registered as endpoints in the Registry. When multiple              
instances exist, they can be put into one or more instance groups (a typical reason for doing so                  
would be to group instances in the same data center or cloud region). Daemons in the same group                  
coordinate to share payment status information through etcd.   10

The daemon provides some additional deployment- and administration-oriented features: 

8 https://grpc.io/. 
9 https://developers.google.com/protocol-buffers/. 
10 https://coreos.com/etcd/.  
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● SSL termination. This can be done either with a certificate and keyfile supplied by the               
service developer or with automatic certificates provided by Let’s Encrypt.  11

● Logging to files, with log rotation and pluggable log hooks. Currently an email hook is               
provided, and an easy-to-use API is available for other hooks. 

● Metrics, monitoring, and alerts. The daemon collects metrics about request calls, which            
service owners can use to optimize their resource usage. It also monitors daemon and              
service events, providing configurable alerts via email or web services. 

● Rate limiting to prevent DoS attacks and to allow service owners to scale at their own                
speed and ability. The daemon uses the token bucket algorithm.  12

● Heartbeat. A pull-based heartbeat service is provided, following the gRPC health           
checking protocol. The daemon will check that the heartbeat of the service is             13

configured; this is used by monitoring services as well as the Marketplace DApp. 
 

2.3 The SingularityNET Registry 
 

The SingularityNET Registry is an ERC-165–compliant smart contract on the Ethereum           14

blockchain that stores organizations, services, and type repositories. AI developers use the            
Registry to announce details of their services, and consumers use the Registry to find the services                
they need. When a user searches for a service in the Marketplace DApp, the DApp reads details                 
of the services from the Registry. The Registry also allows tagging of services and type               
repositories to enable searching and filtering. 

The Registry stores four main pieces of data: organizations, services, type repositories, and             
tags. It supports creation, removal, editing, and reading for all of these, and contains several view                
functions for retrieving data. 

An organization is an umbrella for services to be grouped under and is at the top of the                  
Registry’s data hierarchy. Service developers can (and should) register an organization and then             
put all of their services underneath it. An organization registration record has a name, an owner                
address (in the identity sense), a collection of member addresses, a collection of services, and a                
collection of type repositories.  

Services and type repositories registered under a given organization are said to be owned by               
that organization. The list of members is a primitive access-management structure; members of             
an organization can do everything except change the organization owner and delete the             
organization. 

A service represents a single AI service. Its Registry entry contains all the necessary              
information for a consumer to call that AI service. The entry contains a name, tags, and IPFS                 
hash. The name is an identifier for discoverability, the tags help a customer find a service                

11 https://letsencrypt.org/.  
12 https://en.wikipedia.org/wiki/Token_bucket. 
13 https://github.com/grpc/grpc/blob/master/doc/health-checking.md. 
14 https://eips.ethereum.org/EIPS/eip-165. 
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without knowing its name, and the IPFS hash is the link to the metadata file on IPFS. DApps and                   
smart contracts can use the listServicesForTag view function to discover services. 

All service metadata is stored off-chain in IPFS for performance and gas-cost reasons. This              
metadata includes 

● basic information such as version number, service name, description, etc.; 

● code-level information for calling the service, such as encoding (protobuf or JSON) and             
request format (gRPC, JSON-RPC or process); 

● A list of daemon endpoints, aggregated into one or more groups; 

● pricing information; and 

● an IPFS hash for the service API model. 
 
The CLI provides a convenient API and library for manipulating this metadata. 

A type repository is a Registry entry where a service developer lists service metadata, such as                
the service model and the data types used. The entry contains a name, some tags, a path, and a                   
URI. The name and tags are for discoverability, the path is an optional identifier for the                
organization’s internal management, and the URI allows the client (whether an end user or an               
application making calls through the SingularityNET SDK) to find the metadata. DApps and             
smart contracts can use the listTypeRepositoriesForTag view function to discover AI services.            
The URI is an IPFS hash, and the hosting itself can be done by either SingularityNET, the                 
service developer, or any IPFS pinning service, such as Infura. 

Tags are completely optional but recommended for discoverability. Registry functions allow           
tags to be added to services and to type repositories. After that, the tags are displayed and                 
searchable on the DApp. Thanks to a reverse index built into the Registry contract, other smart                
contracts can also search the Registry directly. This is the foundation for the “API of APIs”                
functionality discussed below. 

The Registry provides all the information needed to find and interact with AI services on the                
platform, either by listing the information in full or, when it is too long, by listing the IPFS hash.                   
The Marketplace DApp is a convenient interface for end users, and anyone can use the               
information in the Registry to build similar marketplaces. 

 

2.4 Scalable Payments with the Multi-Party Escrow and Channels 
 

The Multi-Party Escrow smart contract (“MPE”), coupled with our atomic unidirectional           
payment channels, enables scalable payments in the platform by minimizing the number of             
on-blockchain transactions needed between clients and AI service owners. The MPE contract has             
two main functionalities: 

● It is a simple wallet with deposit and withdraw functions. 

● It is also the set of atomic unidirectional payment channels between clients and services              
providers. 
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A payment channel is a tool that enables off-chain transactions between parties without the              15

delay imposed by blockchain block formation times and without compromising the transactional            
security. There are several kinds of payment channels. Let us consider the simple unidirectional              
payment channel: 

● The sender, Alice, creates an escrow contract with a given expiration date. She funds the               
escrow contract with the desired amount of tokens (say, 23). 

● Suppose Alice wants to send 5 AGI tokens to Bob (“recipient”). Alice sends Bob a signed                
authorization to close the escrow channel and withdraw 5 AGI tokens from it. 

● Bob checks that the authorization is correctly signed, the amount is correct, and the              
amount does not exceed the escrowed funds. 

● Bob can close the channel at any moment by presenting a signed authorization from              
Alice. In this case, Bob will be sent the 5 tokens Alice authorized, and the remaining 18                 
tokens in escrow will go back to Alice. 

● Alice can close the channel after the expiration date and take all funds back. 

● Alice can extend the expiration date and add funds to the contract at any time. 
 

In the model above, there is no way for Bob to withdraw funds without closing the channel.                 
Otherwise, he could use Alice’s signed authorization a second time and withdraw 5 more AGI               
tokens. 

Therefore, we added a feature that allows Bob to withdraw funds from the channel without               
closing it, while preventing this replay attack. We used a simple, textbook solution: a nonce. We                
add a nonce to the message that the sender signs, and this nonce changes each time the recipient                  
claims the channel.  

With this improvement, payment channels inside MPE have the following favorable           
properties: 

● The channel between sender and recipient can persist indefinitely. The sender can extend             
the expiration time and add funds to the channel. The recipient can claim the amount               
signed over to him at any time. 

● The system is comfortably functional even when the Ethereum network is overloaded            
with confirmation time of several hours or even more, for the following reasons:  

○ Neither the sender nor recipient needs any confirmation from the blockchain.           
Alice can continue to add funds, and Bob can continue to claim them in the               
channel, with no confirmation from the blockchain. For example, after Bob claims            
his funds, he can inform Alice that the nonce of the channel has changed, and she                
can start to send messages with the new nonce. It is easy to demonstrate that this                
is safe for both the sender and the recipient. There is only one condition: the               

15 http://super3.org/introduction-to-micropayment-channels/. 

19 



 

recipient should make sure that the transaction is mined before the expiry time of              
the channel. 

○ There is no race condition between claiming (from the recipient side) and            
extending/adding funds (from the sender side). The parties can use these functions            
at any time, and the final result will not depend on the order in which these                
transactions are mined.  

 
When a user wants to call a given service, they must open a channel, add funds to it, and set an                     
expiry date that allows sufficient time for the service to fulfill its function. Each channel is                
unique to a combination of client identity (sender), service identity (recipient), and daemon             
group identity. This allows daemons in the same group to share payment information via etdc,               
reducing the overall number of channels and simplifying life on the client side. Clients can be                
end users interacting with the platform via the Marketplace DApp or applications making calls              
directly or through the SDK's generated code. 
 

2.5 The Marketplace DApp 
 

The SingularityNET Marketplace DApp is an entry point to discovering and using AI services on               
SingularityNET. The DApp 

● reads data from the on-chain Registry and pairs it with off-chain metadata, allowing AI              
services to be searched, filtered, and discovered; 

● integrates the SingularityNET curation service, displaying from the Registry only those           
services that have been vetted and whose owners have undergone due diligence and             
signed legal agreements that protect user privacy and data; 

● allows AI services to display custom UI components for user interactions (gathering            
inputs for service execution and displaying results); 

● integrates with Multi-Party Escrow, enabling the user to pay for service usage; 

● allows consumers to rate services they have used; this is a simple rating component that               
will eventually be replaced by SingularityNET's Reputation System (currently under          
development); and 

● captures usage metrics at a consumer level. 
 

2.5.1 Service Listing 
 

The following diagram illustrates the various components that the DApp will integrate within             
different flows: 
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Figure 7. The various components that the DApp will integrate within different flows 

● The DApp will fetch data on curated services, service tags, and votes from the              
marketplace service, which contains both information on which services are curated and a             
cache of some information kept in the smart contracts and indexed here for performance. 

● It merges the above data with the agent details that it reads from the Registry and IPFS to                  
list them. 

● It will also provide users with a mechanism to upvote or downvote an agent. 
 

The DApp includes a wallet interface, allowing users to 

● deposit and withdraw funds from the escrow contract, 

● deposit funds to a channel (which will go to a specific AI service chosen by the user), and 

● view all open channels and the funds in each. 
 

2.5.2 Service Execution 
 
Once a service has been chosen, it is executed: 
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Figure 8. Service execution  

1. The DApp displays the service in its interface. 

2. The DApp opens a payment channel with the Multi-Party Escrow contract and ensures             
that there are sufficient funds to pay for the service. 

3. It then invokes the service through the daemon. 

4. The DApp displays the response returned by the service. 
 
The DApp in its current version will use MetaMask to integrate with the Ethereum blockchain,               
which means that all transactions will be done via MetaMask.  

Querying the Registry smart contract would be costly, so the DApp currently relies on a               
centralized, serverless component to index and search the Registry. This is merely a performance              
optimization, as the Registry data is still stored on the Ethereum blockchain. A future version of                
the DApp will remove this centralized component but will retain SingularityNET's centralized            
curation and display only curated services.  

 

2.6 Developer Support Tools: CLI and SDK 
 

2.6.1 For Service Providers: The Command Line Interface 
 

The SingularityNET command line interface (CLI) is the primary tool for interacting with the              
platform's smart contracts, managing deployed services, and managing funds. It is aimed at             
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service providers. In the near future, it will be supplemented by a web-based dashboard and               
control panel.  

The CLI provides commands to interface with the blockchain in the following ways: 

● creating and managing identities; 

● registering and managing the organizations, members, services, types, and tags on the            
SingularityNET Registry; 

● claiming funds from customers using MPE and payment channels; 

● reading and writing metadata and Protobuf specs about AI services (these are stored on              
IPFS, while basic service parameters can be fetched from blockchain contracts); and 

● connecting to different networks like local testnets, Kovan, Ropsten, and the Ethereum            
mainnet. 

 
The CLI also provides service development and deployment support. It can set up new services               
by generating service metadata, Protobuf specs, and code templates provided by the            
SingularityNET Foundation. The CLI interacts with daemons for each service.  

Security-wise, the CLI follows the same guidelines as provided by Ethereum for storing the              
private keys. When user identities are created and registered with a client, the CLI safely stores                
the details on the local machine and retrieves them only when it needs to interact with the                 
blockchain. 

  
2.6.1.1 How the CLI Works 

 

Figure 9. How the CLI works 

The CLI requires and connects to four critical components: 
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● User identity management. Involves user registration, managing identities and sessions,          
and locking/unlocking accounts for transacting with the blockchain. This component is           
local to the machine where the CLI is run. 

● Daemon. Sidecar proxy. Communicates to servers hosting AI services. 

● Registry contract. Deals with organizations, members, services, types, and tags. 

● MPE contract. Sends and receives funds and manages other functions related to payment             
channels; e.g., closing a channel or extending its expiry date 

2.6.1.2 Service Registration and Deployment Workflow 
 
Suppose an AI developer has trained a new AI that categorizes images and wants to launch it as a                   
service on SingularityNET. The process would be along these lines: 

1. Create an identity and choose the network to connect to. 

2. Use the CLI to generate the basic service templates (metadata, Protobuf specs, etc.). 

3. Deploy the service with the required group of daemon endpoints configured. 

4. Use the identity and network from previous steps to register the organization along with              
required members, services, type repositories, and tags.  

5. Once the service is curated, it will be shown in the Marketplace DApp. Even before that,                
it can be found via the Registry. 

6. Channels will be created with every service used by a customer. Each channel contains              
the funds used by the consumer. The CLI can be used to claim those tokens from the                 
consumer's escrowed funds.  

 

2.6.2 For Service Consumers: Software Development Kit 
 

The SingularityNET Software Development Kit (SDK) generates client-side libraries to          
seamlessly call SingularityNET services and interact with the SingularityNET platform as a            
whole. 

While either the DApp or CLI is suitable for launching a small number of services, heavy                
and frequent production use of services on SingularityNET will be easier and faster through              
specialized client libraries generated via the SDK. 

A generated client library should require only a funded wallet. It will be able to open and                 
fund channels on behalf of the user with the multiparty escrow contract, generate well-formed              
requests to services, and correctly parse their responses, just like client libraries for traditional              
SaaS platforms. 
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The initial version of the SDK supports Python, currently the most popular language for              
machine learning and AI and a common language for glue code. In the near future, we will also                  
provide versions in other popular languages, such as Go, Javascript, and Java.  

The list of supported programming languages can be expanded at any time. Client libraries              
leverage the gRPC framework, so support for the programming languages targeted by gRPC             
“protoc” compiler is the straightforward initial step. Eventually, other languages could be            
supported; this would require plugins for the gRPC protoc compiler, either written by the              
SingularityNET Foundation or the open-source community. 

As well as making service calls using gRPC, client libraries must be able to interact with                
Ethereum, IPFS, and other components of SingularityNET. This can be achieved with separate             
code for each language, or by wrapping generic libraries (for example in C or C++). For                
languages or operations that still are not supported, documentation will be provided to help              
developers integrate SingularityNET with their platforms. 

A client library in a compiled language would generate calls for each service in the library                
and include additional helper functions to handle interactions with Ethereum, IPFS, the daemon,             
the MPE contract, and state channels. For example, a client library would interrogate the daemon               
at compile time for the encoding used by a specific service and generate method calls that would                 
appropriately marshal requests and unmarshal responses. A client library would also store the list              
of channel IDs so that it does not have to rely solely on those provided by the Foundation or its                    
partner in a transaction (which might fail, or act in an adversarial way) for such information. The                 
developer would then integrate these libraries in their application code. 

For interpreted languages like JavaScript or Python, two different options can be supported:             
both libraries can be generated at compile time for specific services, or more generic libraries               
could be used; they would download a service’s protobuf specification (or load it from local               
storage), compile client libraries for that service at runtime (or leverage a cached, pre-compiled              
client), and dynamically generate service calls. The latter design is used in the DApp, CLI, and                
beta version of the SDK. 

At the moment, the main focus of the SDK is generating client libraries and making service                
calls. In the future, it will be expanded to incorporate other interactions currently handled by the                
CLI. For example, a user should be able to use SDKs written in different programming               
languages to list services on the Registry; change a service’s metadata; and gather and aggregate               
data, logs, and metrics from different daemons for different services that user controls. This              
would allow AI services to generate and register new services automatically, and it would enable               
artificial intelligence to deploy agents. 

 

2.7 Future Improvements 
 

The previous section described all the components of the SingularityNET platform as of             
February 2019, the Beta release milestone. This section describes the major conceptual            
innovations coming to the platform in future releases.  
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2.7.1 Complex Service Interactions: Service Ontology and the API of APIs 
 

In a basic transaction on SingularityNET, a user gives tokens to a single service provider, who                
performs the requested AI task. However, many tasks will require a more complex combination              
of actions by multiple AI service providers. For example, control of humanoid robots requires              
multiple AI services—natural language processing, motor control, speech synthesis, etc.—to          
collaborate according to a particular architecture.  

For a simpler example, let’s say Alice requests that SingularityNET summarize a            
French-language website with embedded video. Her request is sent to a document summarizer             
service, but perhaps the top service specializes in English text summarization. Without recourse             
to other services, Alice's request cannot be fulfilled. However, by relying on the network of AI                
services, we can create an arrangement in which 

1. the text on the website is sent to a document translation service, which returns an English                
version; 

2. the embedded video is sent to a video summarization service, which returns a textual              
summary of key facts and events in the video; and 

3. the original document summarizer service puts together these results and provides a            
useful summary of the website, even though it cannot understand French text or process              
video.  

Because of these interactions between services, the document summarizer provides higher value            
for its customers and can earn more. Moreover, demand for the other two services grows. The                
result is a more vibrant marketplace. Interactions can grow more and more complex. The video               
summarizer can outsource face recognition, object recognition, speech detection, and          
speech-to-text transcription. The document summarizer may also outsource entity recognition to           
other services. Any of those can explicitly hire hardware services for storage or GPU access. 

Out of this complex, dynamic interaction of numerous network participants carrying out            
complex AI services using their collective intelligence comes a SingularityNET-wide AI mind            
with a level of intelligence that is greater than the sum of its parts. (Notably, contemporary                
neuroscience’s best understanding is that in the human brain, general intelligence emerges from             
300 to 400 distinct subnetworks working together, each with its own architecture and set of               
functions and connected to specific other subnetworks in a carefully patterned way.)            
Furthermore, this emergent AI mind will be continually enhanced, as AI developers around the              
world add new nodes into the network, contributing to and profiting from SingularityNET’s             
economy.  

The platform will enable these complex interactions through three layered resources: 

1. At the bottom, the type repository in the Registry allows services to state their inputs and                
outputs in a standard way. Service ads can say things like the following: 

a. I provide outputs of this given type (“text”). 

b. I provide outputs of this given type and value (e.g., “Language” is “English”). 
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c. I require inputs of this given type. 

d. I require inputs of this given type and value (e.g., I can summarize docs if               
“Language” is “English”). 

2. Built on top of the type repository, we will have a collection of APIs, which refer to                 
concrete type data and metadata. This allows for standard specifications for AI tasks like              
“face recognition,” “document summarization,” “genomic dataset annotation,” and so         
forth. These APIs are a more vibrant semantic version of the standard gRPC specs              
already provided by the services. As the APIs are public, any developer can implement              
multiple APIs that provide the same service. 

3. At the top level is an ontology of AI services that makes the APIs understandable and                
browseable. This ontology will be a directed acyclic graph with a few different roots,              
covering, for instance, areas of AI, application domains, and so forth. So “face             
recognition” would be found somewhere in the ontology, and it would be a child node of                
nodes such as “image processing,” “deep neural networks,” etc. 

 
These three levels allow developers to find services that will accept their data as input and                
perform the desired function. The document summarizer AI developer in the example above             
needs this structure to identify auxiliary services needed to complete the job. 

Provided the specifications at each level are precise enough, they also allow the emergence              
of AIs that connect other AIs, or programmatic service finding. These are called matchmaking              
agents.  

AI services that serve as evaluators can be developed and launched on the network. They will                
specialize in assessing and rating the quality of work done by a particular service. This will allow                 
users to search for services that offer a particular service (e.g., face recognition), are compatible               
with a particular API, and meet a certain standard according to an independent AI evaluator.               
These automated evaluations are useful for consumers, highly valuable for matchmaking agents,            
and a key input to the reputation system described in the next section. 

Independent evaluators and public, standard APIs make it easy for new entrants to the              
marketplace to find customers. They can support popular APIs, enabling plug-and-play           
replacement of existing providers, and use independent evaluators to show the quality of their              
services to the marketplace.  

Particularly for large enterprise customers, specialized agents can be developed to scan for             
new, exciting services on the market and test them on a particular problem (for example, finding                
patterns in a financial dataset), helping the customer select a service based on A/B testing or                
multiarmed bandit selection. 

 

2.8 Reputation System 
 
As the number of services on SingularityNET grows, there will be many AI services that perform                
the same function. AI service users (whether human or themselves AIs) will be faced with a                
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choice. The SingularityNET reputation system, by quantifying the reputation that each service            
has earned based on its previous work, will help them navigate this choice.. 

This is critical for making choices about everyday transactions in the network, and it also               
plays a core role in network governance and resource allocation.  

Rating system design is complicated, and the SingularityNET reputation system will need to             
evolve along with the network. We are currently experimenting with an initial design that will               
combine explicit ratings by consumers, financial transaction trails, and machine learning to            
detect fraudulent and malicious behavior. 

At the most basic level, after each exchange of services for tokens (or for other services), all                 
parties involved are asked to rate each other on a [0, 1] scale. In this simple version, an AI                   
service's rating is the distribution of past rating decisions. The rating can be simplified into an                
average value with a count showing how many times it has been evaluated. The average can                
incorporate some time decay so more recent ratings are weighted more heavily than those in the                
distant past.  

Consumers and providers are not required to rate each other. Some defaults can be inferred               
from their behavior: if a customer withholds payment and triggers escrow arbitration, it is safe to                
assume they’re dissatisfied with a service provider, and if a customer comes back, it can be                
assumed they’re satisfied. How consumers and providers manage their channels can indicate            
trust (substantial commitments, long-lived channels) or dissatisfaction (the channel is not           
renewed after expiration). 

Ratings can be multidimensional. This multidimensional rating system is a critical           
component of SingularityNET’s economic and governance models. Dimensions of reputation          
can include general service performance, timeliness, accuracy, value for money, and so on. Other              
aspects reflect measures taken by the network participant to prove its good influence. The              
following are some examples:  

● a stake deposited by a consumer or service owner, to be forfeited should its rating (in                
some dimension) fall below a given threshold  

● a “benefit rating” component, which derives from evaluations restricted to an AI service's             
performance on beneficial tasks (this is key for future access to benefit tasks)  

● validation by external actors, such as proof of ownership by a reputable company             
provided by a KYC service or a legal agreement promising to uphold data privacy              
regulations  

● in the case of open-source software, validation via a checksum that ensures the code              
being advertised matches a specific release in the repository 

 
Despite the need for multiple dimensions and conceptual aspects in a ratings system, for some               
purposes it is valuable to have a single-number rating—for example, to assess the basic integrity               
and trustworthiness of an Agent. To fulfill this requirement, the SingularityNET reputation            
system includes a “base reputation” rating for each Agent that is a real number between 0 and 5.                  
For some purposes, the number 2 is used as a “base reputation threshold.” For example, full                
participation in governance is accessible only to Agents with a base reputation of 2 or higher. 
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Defense against rating system frauds and attacks is a nuanced issue and will likely require a                
variety of machine learning models dedicated to analyzing transaction and rating patterns to             
detect malicious participants. This is an area of active research within SingularityNET. 

 

2.8.1 Reputation System Concept 
 

Since the appearance of distributed computer systems without centralized governance, verifying           
the reputation of participants has been a problem. This problem has been studied in its many                
aspects. A reliable way to determine reputation is critical for peer-to-peer marketplaces, where             
every node in the network can communicate with every other node.  

The standard theoretical framework for such a solution comes from the Byzantine Generals             
Problem, which features a variable number of participants (with variable levels of trust) voting              
independently in order to reach a decision that is to be recorded in a public ledger so that it will                    
be known to the entire community.  

There is a risk of an attacker spinning up many malicious nodes which act together to take                 
over the consensus in the attacker’s favor. We need to design defenses against this. 

Current implementations of blockchain technology use various forms of weighted voting to            
reach consensus. Some weight by tokens staked and others by computational power, for             
example. Each consensus algorithm provides certain heuristics for estimating the trustworthiness           
of a node.  

 

2.8.2 Reputation System Options 
 

Multiple inputs may be used to compute the reputation: 

● First are the explicit ratings used by consumers to rate suppliers from which they have               
received products and services.  

● Second, explicit stakes can be posed by stakeholders with respect to the suppliers they              
back.  

● Third, there could be indirect rating information based on payments by a consumer to              
suppliers. For example, multiple payments may imply that a consumer values a supplier             
highly (a repeat customer is a satisfied customer.)  

● Finally, information about the reputation of known vendors could be extracted from            
online news sources and social media, which in turn would need to account for their               
reputation. 

 
In the simplest case, there could be just one instance of a reputation system. However, in a                 
distributed system with a low level of trust, multiple instances of the reputation service acting               
together may be able to more accurately calculate reputations. These instances will cross-check             
each other to reach consensus on reputations. Next, multiple reputation services may compute             
reputations for different segments of the community in order to provide load balancing or              
domain-specific reputations, which can be merged by an aggregating service. Multiple types of             
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distributed computations may take place in the same network, so that different segments of the               
community have reputations computed by different groups of reputation services.  
 

2.8.3 Reputation “Liquid Rank” Algorithm 
 

Liquid Rank is an algorithm for computing reputation that is described in this blog post. The                
algorithm can take multiple parameters and inputs into account. Primarily, for different input             
ratings, it accounts for rating values of the ratings, financial values of the respective interactions,               
reputation ranks of the subjects supplying the ratings, time when the rating was provided, etc.  

From one perspective, Liquid Rank can be thought of as an extension of Google's PageRank               
algorithm that is better suited to a marketplace, as it accounts for financial values. More               
expensive and more recent payments have more impact on the reputation of a supplier. As in                
PageRank, the greater the reputation of the rater, the higher the value of the rater’s ratings. 

The algorithm may be implemented either in real-time—so that every transaction changes the             
reputation ranks within the community—or in a stepwise fashion, where community members’            
reputations are calculated and updated hourly, daily, weekly, or monthly. From a practical             
perspective, the incremental version seems to be the most cost-effective and the specific period              
can be configured as a system parameter. 

In extremely oversimplified form, the reputation of agent i at time t is its own reputation for                 
previous time (Ri t-1) added to all the new ratings it has received from other agents j over the time                    
period between t-1 and t, multiplied by the reputations of these raters for the previous time, as                 
follows.  

  

Ri t = R i t-1 + ∑j ( R j-1 t* V i j t ) 

 
Reputations may be computed specifically for selected domains, such that a supplier with a high               
reputation in the area of its expertise might have a much lower reputation in some other domain.                 
Within the same domain, different reputation scores may be computed for different            
traits—timeliness, cost, accuracy, etc. These fine-grained reputations may not be included in the             
first version of the reputation system. 
 

2.8.4 Reputation Police  
 

The goal of reputation police is to perform periodic or ad hoc inspections in order to detect                 
malicious patterns in rating or staking activity. There are at least two problems to be solved                
along the way: 

● Natural cooperation versus fake cooperation. A malicious attacker may control many           
agents on the network, which give each other high ratings and transfer money to each               
other in order to artificially inflate their reputations. We need to be able to differentiate               
rings of agents created maliciously from natural ones. For instance, if agent A provides              
agent B with image recognition service and agent B serves agent A with text              
summarization, and then they make payments to each other, there is no way to discern               
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whether the services are fake or not. We cannot discount ratings made between A and B                
simply because they form a loop; doing so would discourage members of the community              
from providing mutual services. The only way to resolve this is to flag the presence of                
any circle or ring of this kind and then inspect the involved agents, audit their source                
code, or perform an “undercover investigation,” ordering services from these agents and            
checking that they perform valid services. 

● Temporally spanning cooperations. Alice may pump Bob’s reputation up in January, and            
then in July, Bob pumps up Alice’s reputation. This may happen organically, or they may               
be collaborating to manipulate the reputation system. It should be possible to figure out if               
cooperation is fake or natural using the pattern recognition incorporated in our design. 

 
Once suspicious agents are found, fraud may be confirmed with manual agent system and code               
inspections, automatic or manual undercover investigations, and other enforcement activities. If a            
suspicious agent is confirmed as fraudulent, preventive measures can be enforced in a manual,              
semi-automatic, or automated manner. Either the agents will be excluded from SingularityNET            
or their activity will be publicly reported to the community so that the providers of staking                
reputations can recall their stakes or highly reputable agents can be appointed to use their stakes                
for “corrective downvoting” against the  guilty agents. 
 

2.9 AI Infrastructure as a Service 
 

SingularityNET is built to remove the barrier between AI innovation and real-world application.             
We want researchers and developers who come up with novel algorithms, techniques, and             
models to see SingularityNET as the best way to deploy their technology, find customers, and               
earn the financial and reputation rewards they deserve. 

This mission requires us to handle the deployment and management aspects of AI services so               
AI developers can focus on what they do best and AI customers can be confident that the                 
services they want will have high uptime, robustness, and performance and will be deployed and               
managed in secure, scalable environments. We will provide AI infrastructure as a service for a               
fee or share of revenues, similar to how app stores have simplified the mobile app economy for                 
users and developers. 

Our “AI-infrastructure-as-a-service” tools will play the role of similar tools by platforms            
such as AWS and Azure, but with the following design goals tailored to the needs of networked                 
AI:  

● Optimize for the computational requirements of training and deploying machine learning           
models. This goes beyond deep neural networks and GPU usage and considers graph             
processing, multi-agent systems, dynamic distributed knowledge stores, and other         
processing models needed to allow the emergence of networked AGI. 

● Support scalable processing of stateful services, which is a challenge in current cloud             
platforms but necessary for many tasks such as those of conversational agents,            
task-oriented augmented reality, personal assistants, and others. 
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● Include secure support for public, private, and hybrid cloud deployments (public–private           
mix and edge–cloud mix). 

● Dynamically optimize compute locations to maximize compute and data proximity,          
improving performance and reducing bandwidth costs. 

 
We will leverage critical open-source technologies such as Kubernetes and OpenStack and            
support deployment of our infrastructure-as-a-service (IaaS) solution both on top of existing            
cloud platforms (where we make optimal use of built-in tooling) and bare metal data centers.               
One key consideration is using cryptocurrency mining hardware to train AI models and             
long-running AI reasoning and inference tasks. 
 

2.10 Deployment in Robots and Embedded Devices  
 

Many SingularityNET services will require powerful computing resources and will, therefore, be            
hosted in the cloud. However, the SingularityNET network itself is not heavyweight, and it is               
perfectly doable for services on the network to be embedded in robots, IoT devices, and other                
low-power devices. These components would run an embedded component that provides SDK            
and daemon functionalities, allowing them to call other services on the network while also              
providing services themselves—for instance, a sensor providing a data feed, which does not             
require much computation. This combination of edge-embedded network nodes and cloud-based           
computing power opens up many possibilities in IoT and robotics—some obvious, some creative             
and unexpected.  

This will also enable robots, such as the humanoid robots from Hanson Robotics and robots               
from other providers, to acquire cognitive services from cloud-based SingularityNET AI services            
in exchange for micropayments and to receive micropayments from other SingularityNET           
network participants in exchange for data. It will also enable robots to carry out small economic                
transactions with each other based on purely local network interactions where internet            
connectivity is an issue. 

 

2.11 Blockchain Agnosticism 
 

The SingularityNET platform currently depends on the Ethereum blockchain. It may be useful or              
even necessary to support other existing blockchain technologies in order to broaden adoption,             
improve scalability, or achieve other goals. The platform architecture is designed with this             
possibility in mind, and it attempts to concentrate all interactions with the Registry and the MPE                
contract in small code components. 

Throughout 2019, we will work on turning those components into libraries with as much              
generality as possible. A decision on which other blockchains to support, and when, has not yet                
been made, but encapsulating the code in libraries will ensure that as the platform evolves, the                
possibility of supporting other blockchains is preserved and the amount of work required will be               
manageable.  
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2.11.1 Reputation-Based Consensus 
 

We intend to test an evolution of the proof-of-stake consensus algorithm that we call Proof of                
Reputation, which combines several factors: stake, activity in the network, specific rating aspects             
(particularly benefit rating), length of time elapsed with activity and rating levels above specific              
thresholds, and others. Machine learning can be used to optimize the combination of factors.  

There is a significant overlap between what we intend with Proof of Reputation and the NEM                
blockchain’s “Proof of Importance” framework, so our Proof of Reputation will borrow NEM’s             16

ideas and perhaps some of their algorithms. Some component of proof-of-work may also be              
desirable, but we would rather solve some beneficial machine learning problem than burn cycles              
on cryptographic puzzles. The computational cost of these machine learning tasks varies much             
more than for most crypto puzzles, so this idea needs refinement over the next few years. It                 
seems most likely that, at the end of a period of refinement and experimentation, we will end up                  
with a Proof of Reputation framework incorporating some NEM-like aspects with a machine             
learning–based proof-of-work component. 

 

2.12 Incremental Improvements to Current Components 
 

In addition to the new components just described, we plan improvements to the existing              
components that will make the platform more usable and flexible for AI developers and              
consumers. These improvements will be released gradually throughout 2019 and include the            
following: 

● A web dashboard and control panel for AI service owners, providing them with             
monitoring, metering, logging and other usage statistics for their services and allowing            
them to register and manage services; this is essentially a web-based complement to the              
CLI 

● Flexible pricing models, allowing fixed-price monthly and yearly subscriptions to a           
service (with optional usage caps) and bulk discounts 

● Asynchronous and streaming request support for AI services 

● A refactored Marketplace DApp with injectable AI service UI components and no need             
for a centralized marketplace search service 

● SDKs for Java, Javascript (Node.js), and Go  

● A full-service mesh abstraction provided by the daemon that will make calls between AI              
services more convenient. 

16 https://nem.io/NEM_techRef.pdf. 
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3. Democratic Governance 
 

SingularityNET is not only a network of AI agents but also a network of humans who use,                 
create, rate, and otherwise interact with the AIs. Because it is a decentralized organization, the               
ongoing health and growth of SingularityNET will rely on democratic decision-making by            
network participants. A democratic process is used to make decisions regarding network            
operation and to allocate newly minted AGI tokens.  
 

3.1 Reputation and Stake-based Voting  
 

Voting is filtered by reputation; only Agents with a base reputation above the threshold of 2 will                 
be counted. Furthermore, only Agents whose owners have been verified by appropriate KYC             
procedures will be permitted to vote (although other Agents can still participate in the network               
by offering or purchasing services).  

The initial default plan is to use standard KYC methodology, likely via partnership with an               
external firm specializing in KYC for blockchain-based enterprises. Before year 4 of the             
network’s operation, this will be replaced by a decentralized KYC methodology through which             
Agents are “KYC’d” by other Agents rather than any central authority. One possible approach is               
essentially a “verification federation” consisting of Agents that are democratically approved to            
perform KYC functions.  

The amount of voting power that an owner (a verified entity that owns an agent) has                
regarding core network operation issues and the distribution of the future development reserve is              
given by the following formula: 

Let stake (O) denote the total stake of owner O across all its Agents (i.e. its total amount of                   
AGI token holdings); let stake (A) denote the stake of a particular Agent A; and let rep(A)                 
denote the base reputation of Agent A. Let ag(O) denote the set of Agents owned by owner O.  

We use the following definition: 
 

 

Here L is a boundary so that for x < L, the function Ψ behaves piecewise linearly and for x ≥ L,                      
the function Ψ behaves logarithmically (and c is just an arbitrary normalizing factor).  

Then we set  
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The combination of reputation and stake in this formula gives more voting power to more highly                
rated entities while preventing attacks involving large numbers of sockpuppet agents that have             
good reputations but carry out few transactions.  

At a high level, one can think of this voting formula as a sort of “Proof of Contribution”: 

● The use of the logarithmic function in the first term of the formula means that owners                
with more AGI tokens get to vote more, but that once the amount of their token                
ownership exceeds L, their voting power increases according to the order of magnitude of              
their AGI ownership rather than linearly. 

● The second term in the formula means that owners whose agents are doing useful (highly               
reputable) things get more voting power. The use of the Ψ function is intended to avoid a                 
dynamic in which owners are rewarded for splitting up their AI functions among many              
small agents, each with a tiny stake but a good reputation. For stakes up to size L, there is                   
no reward for splitting up agents smaller than that size. For stakes above L, there is some                 
reward for splitting up agents smaller than that size. This is analogous to a law that treats                 
businesses smaller than a certain size differently than larger ones. The parameter L could              
be set initially to be equal to roughly 100,000 AGI tokens, for example.  

 
The democratic mechanisms in the network are based on liquid (or delegative) democracy,             
meaning that when an agent A is qualified to vote on a decision, Agent A may also choose to                   
delegate its voting power to some other Agent, Agent B. There may be smart contracts that                
allocate votes on some topics to some Agents based on metadata attached to the decisions or                
other more complex criteria. (For example, if you trust another Agent to do its due diligence on                 
charitable projects, you may delegate to it your voting power for decisions about which projects               
are beneficial, but for no other decisions.) The network will provide standard smart contracts to               
automatically delegate votes, but Agents can of course use any tools they wish for this purpose.  

Major changes to the network will require more votes than minor changes. By major              
changes, we mean, for example,  

● changes in the percentage of tokens allocated to different purposes (e.g., curation rewards             
versus benefit tokens), 

● changes to how base reputation is calculated,  

● changes to the quantitative parameters governing network economics,  

● any decisions regarding creating more AGI tokens beyond those initially mined, or 

● key design changes like moving to different blockchains and consensus algorithms. 
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By minor changes, we mean things like modifications to the APIs and ontologies used in               
inter-agent interactions.  

For decisions regarding benefit tasks, the proposed mechanism will use a combination of             
votes by reputable Agents and benefit votes. The network gives benefit votes to Agents in               
proportion to their benefit quality ratings. (“Major changes” related to benefit tasks are changes              
to the system that certify tasks as benefit tasks.) 

 

3.2 Transitioning to Full Democracy  
 

In the early phases of network development, the Foundation will make some of the governance               
decisions. Decision-making will transition in phases to a purely democratic governance as the             
network matures, with the following specifics:  

● In years 1 and 2 of network operation (following the initial token issuance event), major               
changes are to be determined by the Foundation in accordance with the bylaws of the               
Foundation installed at the time of network inception, while minor changes will be             
determined by a 51% majority of AGI token holders. 

● In years 3 and 4  

○ Major changes in the operation of SingularityNET: agreement of the Foundation           
plus a 51% majority of AGI token holder votes 

○ Minor changes in the operation of SingularityNET: a 51% majority of AGI token             
votes  

○ Major decisions related to benefit tasks: agreement of the Foundation plus 51% of             
AGI token votes plus 51% of benefit votes  

● From year 5 onward  

○ Major changes in the operation of SingularityNET: a 65% supermajority of AGI            
token votes  

○ Minor changes in the operation of SingularityNET: a 51% majority of AGI token             
votes 

○ Major decisions related to benefit tasks: a 65% supermajority of AGI token votes             
plus 65% of benefit votes are required  

 

3.3 Decisions regarding Benefit Tasks  
 
In SingularityNET, a percentage of the network’s assets are to be designated as “benefit tokens.”               
(The exact percentage is determined by democratic mechanisms described in this section.) The             
democracy then votes on what tasks are considered “beneficial”; they would include things like              
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researching cures to diseases. Agents on the network can earn these designated benefit tokens by               
doing beneficial tasks. 

A specific set of democratic mechanisms is used to decide which tasks, carried out by which                
Agents, are entitled to benefit tokens. As with other decision-making, this will transition from              
Foundation control to fully democratic control.  

We introduce the role of benefit deciders: Agents authorized by the network to decide              
whether specific tasks fulfill the criteria needed to quality as benefit token recipients.  

We propose the following:  

● Each Agent gets a certain number of “benefit votes” to cast each month, based on its                
benefit rating.  

● Benefit tasks are assigned to categories. In order for a category to be considered as a                
potential benefit task, it must be nominated by 2% of benefit votes cast during a month.                
We may create web-based tools for suggesting new tasks, soliciting votes, and easy             
voting. 

● Once a qualified benefit decider nominates a certain task category as a potential benefit              
task, then the community votes on whether it should be ratified as a benefit task. Voting                
power on this is proportional to benefit rating. If 25% of votes cast are in the affirmative,                 
then the task type becomes a benefit task.  

● Once a benefit task is approved, any Agent capable of performing it and possessing a               
sufficiently high rating and benefit rating will receive benefit payment for doing it.  

 
Research on improving the theory of benefit will initially (and perhaps ongoingly) be rated as a                
benefit task in order to incentivize the distributed community to contribute to this type of R&D. 
 

4. High-Level AI Services 
 

A large, flourishing SingularityNET will contain AI Agents of multiple types interacting in             
complex ways. Some AI Agents will specialize in highly abstract mathematical algorithms,            
others will deliver concrete end-user services and outsource their back-end algorithmics to sets             
of other AI agents. 

The Foundation will initially seed the network with its own Agents. For this work, we make                
the distinction between “core AI algorithmic services” and “high-level AI services,” the latter             
being specific concrete functionalities to end users. There may be gray areas, but this distinction               
adds valuable clarity beyond generically thinking about “AI Agents.” 

This section reviews some of the domain-specific, high-level AI services being developed by             
the SingularityNET Foundation’s AI development team. The following section digs into the AI             
R&D being pursued by the SingularityNET Foundation team, some of which has already resulted              
in AI agents prototyped on the SingularityNET network and used within high-level AI services.              
Others are at an earlier stage, planned for launch on SingularityNET later in 2019 or in 2020. 
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4.1 Summary 
 

4.1.1 The Need for AI Solutions 
 

Recent advances in AI have driven an explosion of intelligent applications that will dramatically              
change the way we live. Figure 10 below demonstrates the vast array of enterprise companies               
that use AI in their product or service. Applications can be found in every vertical and functional                 
area, from manufacturing to HR. For example, manufacturers are using deep neural networks to              
quickly identify manufacturing flaws, far surpassing the speed and accuracy of their existing             
techniques, and HR professionals are using AI to help them sift through thousands of resumes to                
build a short list of candidates efficiently. 

In their 2018 assessment of the AI market, McKinsey Global Institute estimated that the              
impact of deep neural networks alone would be between $3.4 trillion and $5.7 trillion in               
incremental value for organizations. 

All these applications are driven by AI algorithms that are packaged as AI services that               
provide customer solutions. SingularityNET is a network of such AI services that anyone can              
contribute to, making cutting-edge AI techniques available to everyone. 

 

 

Figure 10. Companies that either provide AI as a service or incorporate AI in their 
product/service offering 
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4.1.2 What Do We Mean by AI Services? 
 

At the most abstract level, one can think of an AI service on SingularityNET as a function with a                   
set of inputs and outputs. The service could be a low-level service that does a specialized unit of                  
work or a higher-level service that calls upon a series of lower-level services to complete               
components of its overall function.  

For example, in Figure 11 below, A is the high-level AI service. It calls three lower-level                
services: A.1, A.2, and A.3.  

E is another high-level AI service on SingularityNET. It calls on A. Other calls on the                
services of A are made be App 1, a software application, and S1, a smart contract on another                  
blockchain. 

  

 

Figure 11. AI services on SingularityNET can be called in many ways: by another 
SingularityNET service, by a smart contract on another blockchain, by an application, or directly  
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An example of a high-level AI service is an image captioning service. This service would create                
a description of an image (e.g., “A poodle is sleeping on a kitchen floor.”) The main service                 
would be able to create a caption based on the relative positions of identified objects in the                 
image. The service would not itself identify the objects, but would instead call lower-level              
services to do so and then use that information to create the caption for the image. 

 

4.1.3 Higher-level AI Services Help Drive Growth 
 
It is not always immediately apparent how low-level services focused on AI algorithms can be               
applied to solve everyday problems. This is where higher-level services help. These provide             
convenient interfaces to tools that solve domain-specific problems. The more of these high-level,             
user-facing services there are, the greater we expect the activity on SingularityNET to be.  

 

 

Figure 12. The SingularityNET flywheel 

 
This relationship is illustrated in Figure 12 above, where the blue flywheel represents the activity               
on SingularityNET; i.e., how often services are being called. The faster the flywheel turns, the               
larger the blue circle will become, reflecting the greater level of activity on the network. The                
actions shown around the wheel drive the speed of the wheel. Starting from the top left corner,                 
the greater the selection of AI services on the network, the wider the selection of AI projects will                  
be – which will mean more high-level APIs will be created. This will lead to better user                 
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experience, which in turn will drive more traffic to the network. This traffic will attract more                
developers to deploy AI services on the network, and so the cycle continues.  

Through this activity, additional funding will be available to the SingularityNET Foundation            
to invest in the platform and infrastructure, which will result in improvements in speed and               
reliability. This, in turn, will lead to improvements in the user experience which will drive more                
traffic to the platform. 

 

4.2 AI Services Provided by the SingularityNET Foundation 
 
For our initial work on high-level AI services within the SingularityNET Foundation, we have              
selected four areas of focus that we describe in moderate detail below: 

● Network analysis 

● Social robotics 

● Bio-data analytics 

● Probabilistic graphical models and serious games 
 

4.2.1 Network Analysis 
 
4.2.1.1 Motivation 
 

The age of big data has taught us the “network perspective”: that the connections between things                
are often as interesting as the things themselves. Network analysis involves a broad range of               
tools that take the network perspective, siphoning streams of meaning from what is otherwise a               
firehose of information. The tools we are building on SingularityNET deal with areas like the               
following: 

● Social network analysis and visualization, where graph algorithms from mathematics are           
used to describe the shape of a network as a whole and properties of the parts like                 
centrality. This allows us to see, for example, how well network members communicate             
with each other, and to infer who the most influential communicators are. 

● Probabilistic graphical models, where algorithms from probability and statistics are used           
to describe causal relationships, so we can tell, for example, the webpage that people              
would be most likely to want to visit or the best way to treat a patient’s illness given all                   
the facts we know about the patient. 

● Network evolution, where the dynamic unfolding of network relations over time is            
studied using evolutionary computation and neural networks that both generate and           
predict network outcomes. Particular attention is paid to what causes growth and decay in              
networks, so we can predict, for instance, what goods and services will be in demand next                
year in a particularly competitive market. 
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● Networked artificial intelligence, the study of cooperative and competitive connections          
between distributed artificial intelligence programs and the processes by which these           
algorithms self-organize into better solutions. We use the principles of distributed AI not             
only to design the SingularityNET dynamics, but also as a tool to save human labor and                
make our AI programs serve our customers more effectively. 

● Agent-based simulation of complex adaptive systems, the emulation of the virtuous and            
vicious feedback cycles in real-world systems to find the best policies to achieve goals.              
For example, we may want to explore ways to break the vicious feedback cycles of               
corruption in our society, develop an alert that the housing market is in a bubble, or                
emulate symbolic interactionist social feedback in Sophia the robot.  

 
4.2.1.2 Examples of Applications 

 
Our specialists in applied distributed artificial intelligence have developed various network           
analysis tools, each with its own practical applications. These include the following: 

● A tool that reduces human labor in choosing and parametrizing AI algorithms through             
feedback between artificial intelligence modules. Modules are rated with tests specific to            
the module and with the tests set by their consumers, among others. For some classes of                
AI programs (for example, unsupervised algorithms such as clusterers and vector spaces),            
these multiple weak tests measure effectiveness better than any one strong test. 

● A natural language tool to reduce the human labor of putting data into applications. This               
tool will interpret natural language texts (such as medical research papers) in a way that               
is both understandable by humans and needed by downstream AIs. It is designed to              
nudge unsupervised clusterers into a human-designed ontology through seeding with a           
few exemplars, rather than with the large lists required by supervised learning techniques,             
using networked relations.  

● A tool to test social policy that emulates micro-level social psychological phenomena            
(such as cognitive dissonance and symbolic interactionism) in AI agents to explore how             
these micro behaviors create and react to macro social patterns. Treatment policies for             
social ills are applied to individual agents, where we can observe the effects on agent               
interactions and explore treatments. This tool has been applied to develop defense            
strategies against hybrid warfare campaigns that cause polarization in populations and to            
develop policies that alleviate corruption in societies, and has done so via award-winning             
analyses. 

● A tool to combine the outputs of multiple disparate simulated realities into a single              
coherent whole using an intelligent fabric of probabilistic ontologies that automate the            
entry of moves in each reality and run models ahead in a gametree to evaluate the results                 
of moves. This tool was applied to an award-winning analysis of large social systems and               
is useful for any data fusion application. 
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● A market-testing tool that incorporates adaptive economic agents. In work conducted for            
an insurance company, our researchers used this tool to test the effectiveness of payment              
innovations in increasing the quality of healthcare in America under the Affordable Care             
Act and to find the best pricing and offerings for new businesses in particular markets,               
via analyses that include higher-order effects. 

● A tool to convert real-world data into a form that can be played as a game and optimized                  
by artificial intelligence techniques. This tool was applied to personalized medicine using            
healthcare claims data to map out the likely effects of treatments, combining the accuracy              
of deep neural networks with the ability of epidemiological applications to tease out             
causal links in data. 

 
4.2.1.3 SingularityNET Simulation 

 
Alongside practical applications such as those mentioned above, we have used network-theory            
abstractions to design and build a miniature SingularityNET, which serves the double purpose of              
testing SingularityNET “policy” settings such as the reputation system and offering the same             
type of analysis that the full SingularityNet will offer but in a miniature form that can be run on                   
an analyst’s personal computer.  

This miniature SingularityNET is a small market in which programs may send feedback to              
each other through price signals. Price signals serve as an assignment of credit. This simulation               
allows Python programs, models, and AIs to coevolve. It can be used for any coevolutionary               
purpose.  

This simulation shows aspects of cognitive synergy between agents having emergent           
cognitive properties above and beyond those of the individual agents.  

Because the agents in this simulation model can be made to run various AI programs, the                
simulation can also be made to do other things besides simulate a realistic SingularityNET. For               
instance, if you simulate a SingularityNET where all the AI agents are running clustering              
algorithms, then the simulated SingularityNET becomes essentially an emergent-level clustering          
meta-algorithm. 

One can carry out various AI tasks (like clustering or prediction) or real world              
system–modeling tasks (e.g., modeling a political system or a real-world market) by the             
methodology of creating a simulated SingularityNET full of simulated agents running actual AI             
algorithms that are configured and distributed in a certain way. This approach can be used to                
especially good effect in situations where one AI agent’s modeling process can benefit from              
feedback from another AI agent’s modeling process.  

For example, one such application is feedback between the interpretation of data and multiple              
overlapping disparate models of the processes that created the data—together, the data and the              
models create a better model as a whole. In our work on this sort of data fusion through                  
feedback, we use specialized data processors and models that are designed to accept and adjust to                
feedback. These include a clusterer that can take in exemplar inputs and an agent-based model               
with special data-absorbing properties that integrate theory with data. A similar approach can be              
taken with more sophisticated AI methods, such as coevolutionary neural networks, that put parts              
of neural networks together with other types of AIs in a connectionist ecosystem. 
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4.2.1.3.1 Social Media 
 
The algorithms of social media are suspected of contributing to many of our modern social               
problems and of being poor proxies for natural social interaction—but they are still essential to               
modern business.  

Foremost on the minds of social media executives is how to preserve the quality and utility of                 
business, social, cultural, and political interactions, but the science of how social media             
algorithms affect the social fabric is poorly developed.  

When artificial social environments are constructed in digital space, their rules and            
algorithms are a proxy or stand-in for the rules that govern social interaction in the real world.                 
SingularityNET’s reputation system, for example, is an algorithmic proxy for how people            
determine who is authoritative and worthy of attention.  

We do not assume that a painful direction of technology is inevitable, but rather seek to                
explore how pain could be avoided by improving the social proxy, especially to identify the               
qualities of natural social interactions that protect people while helping them to know each other               
and learn from each other. 

We simulate natural social interaction using insights from social science and compare it to              
multiple social media and social proxy algorithms. We create measures for social values, such as               
democratic meritocracy and economic growth, and test them against social media social proxy             
algorithms.  

In particular, we test popular crowdsourcing algorithms for their effect on the emerging             
oligarchy and explore alternatives for a way to protect democracy. SingularityNET researcher            
Dr. Duong’s history of award-winning social science policy testing is used at SingularityNET to              
test our reputation system. 

We want to extend these tests to include measures of SingularityNET values, such as              
fairness; i.e., the ability to give all software a chance to get chosen in proportion to its merit. We                   
will exploring creating these tests by combining Kaggle-type verification with crowdsourcing,           
and we will explore how the reputation system should change at different stages of              
SingularityNET growth.  

We extend the same model of oligopoly and related dynamics in social networks to tests and                
measures of the ability of social media algorithms to fill social needs in general, starting with                
SingularityNET values. In particular, we seek to demonstrate that algorithmically promoting           
democracy and meritocracy creates better products. 
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4.2.2 Social Robotics  
 

4.2.2.1 Motivation 
 
Our social robotics research track is focused on improving the well-being of humans through the               
use of natural interfaces and artificial intelligence. Instead of adapting human behavior and             
society to technology, this adapts technology to meet natural human behavior, creating social and              
cross-culturally intuitive interfaces. We aim to achieve this by researching and developing            
embodied humanoid robots and virtual avatars, or humanoids. 

Hanson Robotics, one of SingularityNET’s cofounding firms, is focused on humanoid robots            
capable of interacting naturally with people. SingularityNET and Hanson are designing systems            
to nurture multiple species of robots as next-generation interfaces for delivering AI services and              
applications and fostering the emergence of global artificial general intelligence.  

AI drives these technologies in several key ways: 
Deep learning, machine learning, and computer vision models enable auditory and visual            

understanding of human interactions. Accurate perception is at the root of all social interactions              
and shapes the quality and flow of interaction with artificial humanoids.  

In this track, we emphasize perceiving social cues. We aim to advance the state of the art in                  
multimodal emotion recognition, a field with increased visibility and relevance in recent years,             
and we advocate for inclusive and cross-cultural research in both data collection and modeling.              
We are also interested in training machines to understand relationships between people—where            
they are looking, at whom they are looking, to whom they are talking, the eye contact they make,                  
and their body posture cues. While a lot of recent advancements in audiovisual perception have               
been made in the field of deep learning, we believe we can contribute through our holistic                
approach of data collection through all aspects of humans–humanoid interactions. 

This track involves active research into not just perception but also the actions of our               
humanoids, such as speech synthesis, body gestures, and facial movements. We are developing             
methods of speech synthesis more emotionally expressive than the current state of the art and               
capable of a wide range of different intonation styles. Because of our focus on humanoid agents,                
we also focus on data-driven modeling of facial expression and facial expression mirroring. 

We have built a dialogue and behavioral engine developed within the GHOST framework             
(the General Holistic Organism Scripting Tool, which described in section 5.2.6). It aims to use               
the OpenCog cognitive architecture to integrate our data-driven perception and expression           
models with the behavior of our humanoids. Our initial implementation resembles traditional            
rule-based approaches to dialogue; however, through the shared knowledge representation and           
tight integration within the AtomSpace (described in section 5.2.7) even at this first stage of               
design and development, we can integrate all components more tightly than traditional            
turn-based systems can. Over the course of research and development, we aim to replace more               
and more of the rule-based aspects with higher-level algorithms developed within other tracks of              
SingularityNET research, such as language learning, PLN, ECAN, etc. 
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4.2.2.2 Examples of Applications 
 

Applications of the social robotics–related technology described above follow: 
The Loving AI project was research into the emotional impact of interacting with kind,              

loving humanoid embodiments. We have used Sophia the robot in conjunction with GHOST (see              
section 5.2.7) and our emotionrRecognition deep neural network in this research. We have used              17

this configuration in IRB-approved research trials in Hong Kong in 2017 (N=26) and San              
Francisco in 2018 (N=35). Preliminary results show that interactions, specifically guided           
meditation sessions with audiovisual components, emotionally responsive dialogue, and facial          
expression mirroring, did lead to increased well-being and more positive feelings. The results             
also suggest that humanoid robots or audiovisual avatars are more effective at this than a purely                
audio-based interface. 

The General Holistic Organism Scripting Tool (GHOST) is also being used as a             
conversational agent within the Mozi computational biology project. There, handcrafted rule           
bases have been written to guide the user through a constrained, yet natural, language dialogue.               
Several key components have been developed to interface this conversational agent to the             
experimental setup used within the project in order to provide a more fluid and natural interface                
to a vast plethora of possible configurations. 

 

4.2.2.3 Plan 
 
We have integrated the OpenCog-based GHOST tool with HEAD, the main control system for              
Sophia the humanoid robot. This integrated system is currently being used for research and              18

development in our offices, social robotics research trials, and some of our public events.  
We are currently researching adding novel, goal-directed structures to the rule base to allow              

for the compositional design of skills and freeform dialogue. Also,we are improving the             
architecture by developing strategies for unit-testing both individual abilities and the entire            
architecture throughout the development process. 

Our next steps are about replacing more and more of the rule-based structures with deeper               
cognitive understanding using our unsupervised language learning initiatives, PLN, ECAN, and           
other components of OpenCog and SingularityNET. We are also integrating more and more             
services hosted on SingularityNET in this project. 

 
4.2.2.4 Services 

 
Some of the specific AI services under development in the social robotics track are the               
following: 

 
 

17 https://arxiv.org/abs/1709.07791. 
18 https://github.com/opencog/ghost_bridge. 
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Action 
 
Dialogue 
 

● GHOST dialogue engine based on OpenCog AI 
 

Expression 
 

● Facial expression generation  
 
Perception 
 
Visual 

● Faces 

● Face recognition/tracking 

● Face identification 

● Gaze tracking 

● Facial expression and emotion recognition 

● Visual speaking and non-speaking detector 
 
Bodies 

● Pose tracker 

● Robust person detection 

● Gesture recognition 

● Gait characterization 
 
Auditory 
 
Voice 

● Speech recognition 

● Voice identification 

● Voice activity detection 

● Laughter detection 

● Multiple-speaker speech separation 
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● Detection of what language is being spoken 
 

4.2.2.5 Mind-Modeling and Loving AI Development 
 
We are currently working on extending the Loving AI pilot program to add new functions to the                 
OpenCog AI system related to unconditional love. These functions could be manifested via any              
reasonably flexible robot or avatar; however, for the immediate future we will continue using              
Sophia for experimentation and testing. Sophia has particularly strong emotional expression           
capability and a global media presence, and she is a system our team is familiar with. 

The work in 2019 will focus on giving OpenCog/Sophia a genuine “model of mind” for the                
first time. The goal will be for the AI/robot to build a working internal model of thoughts,                 
feelings, motivations, intentions, etc. of the person with whom it is interacting. This would give a                
significant boost to the robot’s understanding of people with whom she interacts, which we              
believe is required for her to genuinely express unconditional love. Of course this initial “model               
of mind” will not be the same as a typical human’s model of other humans’ minds, but it will be                    
a start in this important direction.  

One of the motivations of this work is to lay the groundwork to extend the Loving AI                 
protocol so that the AI can learn about the person as they are interacting and to some extent bring                   
that learning to bear in its statements and questions to the person. This will also allow for                 
repeated sessions with the same person with continuity, as the robot builds and improves its               
model of the person.  

This mind-modeling work integrates emotion-modeling as a result of leveraging and           
improving the AI framework’s emotion regulation, enabling the AI’s emotions to better reflect             
and respond to the human’s emotions that it models. This will give Sophia (and any other robots                 
or avatars controlled by the software) richer emotional expression, better emotional connection            
with others, and the beginnings of an understanding of human emotion in general. All of these                
are steps toward “skillful means” in expressing and eventually feeling unconditional love. 

 

4.2.2.6 Social Cognition with Deep Recurrent Neural Networks 
 
In our current social cognition research, we use the power of deep recurrent neural networks to                
represent social mental states, including states of cognitive dissonance, to measure and predict             
human reactions to information and then apply the results to improve the messages sent to               
persons. These results could automatically detect and alert to attempts at psychological            
manipulation that take advantage of human cognitive dissonance and tribalism, or they could             
simulate realistic social reactions on an individual level, such as feedback between Little Sophie              
robot and a “parent.” Our scientists originally wrote similar programs using the Boltzmann             
machine to simulate population reactions to information operations. This tool can be applied to              
any case with multiple, possibly dissonant, social information messages, whether it focuses on             
the individual or a population. 
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4.2.3 Bio-data Analytics 
 

4.2.3.1 Motivation 
 
The explosion in the quantity and complexity of experimental data generated by biomedical             
research is widely recognized.  19

 
The amount of data being produced in genomics daily is doubling every seven months, so               
within the next decade, genomics is looking at generating somewhere between 2 and 40              
exabytes a year.  20

 
This has created a bottleneck in converting new discoveries into clinical applications —the            21

so-called “translational medicine” pipeline—and it is widely understood that machine learning           
and other AI approaches must be applied to increase the speed of processing data and close this                 
gap. A software infrastructure is needed to process and store the data, analyze and summarize it                22

in an understandable form, integrate it into comprehensive predictive models of normal and             
pathological processes, and apply these models to diagnose and treat patients.  23

 

4.2.3.2 Examples of Applications 
 
Systematic Knowledge Discovery: Literature Aggregation and Text Mining 

 
With an exponentially growing number of scientific publications (global scientific output           
doubles every nine years ), manual knowledge collection and curation has become an extremely             24

challenging task. Networks of institutions continuously aggregate new knowledge in thousands           
of knowledge bases using both manual curation and various automated methods. A single             
experiment produces thousands to millions of distinct measurements that must be sifted through             
by referencing this existing knowledge to construct a causal hypothesis explaining the            
phenomena under study. Automating searches of the body of scientific literature and of the              
experimental findings specific to the user’s research question is a crucial goal in the application               
of AI to biomedical research. 
 

 

19 https://www.cnbc.com/2015/12/10/unlocking-my-genome-was-it-worth-it.html; 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955563/; 
https://www.liebertpub.com/doi/full/10.1089/big.2014.0023. 
20 https://www.washingtonpost.com/news/speaking-of-science/wp/2015/07/07/sequencing-the-genome-Creates-so- 
much-data-we-dont-know-what-to-do-with-it. 
21 https://www.nature.com/news/medical-genomics-gather-and-use-genetic-data-in-health-care-1.15065; 
https://ieeexplore.ieee.org/abstract/document/8123845. 
22 https://content.iospress.com/download/bio-medical-materials-and-engineering/bme1488; 
https://www.ncbi.nlm.nih.gov/pubmed/16207526. 
23 http://ieeexplore.ieee.org/document/8123845. 
24 http://blogs.nature.com/news/2014/05/global-scientific-output-doubles-every-nine-years.html. 
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Systematic Knowledge Discovery: Cell Population and Organ-level In Silico Modeling 
 
In silico experiments and analyses use mathematical modeling and computer simulations to            
overcome various limitations of in vivo and in vitro methods and support the needs and research                
challenges of the biomedical and pharmaceutical industries. The empirical and physics-based in            
silico models allow preliminary discovery and testing of novel genetic and metabolic networks to              
be validated in experiments. The reconstruction process for genome-scale metabolic networks is            
well developed but labor intensive. Thiele and Palsson published the best protocol in this area               25

of research. 
However, even with the impressive progress in computational biology and chemistry, the            

number of tissue- and organ-level simulations is limited. So far, only three organs—the mouse              
pancreas, the C. elegans gonad—and partial rodent brain development—have been modeled in            
silico.  26

On the other hand, some models—for example, the human body physiology models            
developed within the Physiome project and the Virtual Physiological Human initiatives—have           
already been applied to solve some clinical problems and have brought in silico modeling closer               
to clinical translation.  27

 
Diagnostic Biomarker Discovery 
 

Biomarkers indicate alterations in one’s biological state or health condition. The discovery of             
novel biomarkers and advances in high-throughput technologies, such as DNA microarrays and            
mass spectrometry, provide direct support in observational and analytic epidemiology, clinical           
trials, screening, diagnosis, and prognosis. Many statistical and machine learning methods have            
been adopted for measurement and evaluation purposes and for building predictive models based             
on biomedical data.  
 

Drug Target Discovery 
 
One of the major challenges in biomedical sciences is identifying the metabolic and regulatory              
pathways of disorders for rational drug design and target-oriented drug development. A            
simulation of a metabolic network in silico allows for simulated testing of these predicted              
genotype-phenotype-drug metabolic pathways. 
 

In Silico Patient Modeling for Personal/Precision Medicine Diagnosis and Treatment          
Planning 

 
The future of medicine will be highly personalized, catering holistically to each patient’s unique              
biological blueprint. Science is beginning to uncover the unique dynamics of each person’s             
biological structure by using machine learning tools to piece together a full atlas of an               
individual’s genomics, proteomics, and other “-omics.” Stronger models that connect our           
individual microbiomes to our genomes, metabolomes, and epigenomes are beginning to uncover            

25 https://onlinelibrary.wiley.com/doi/book/10.1002/9781118617151. 
26 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896968/. 
27 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055650/. 
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the delicate connections that these factors have in an individual’s body. Once we fully              
understand these connections, we will be able to bridge accurate diagnosis techniques with             
highly targeted therapy (so-called theranostics), develop successful strategies for creating          
high-impact therapeutics, and “shift the emphasis in medicine from reaction to prevention and             
from disease to wellness.”  28

 

 

Figure 13. Main focus areas for developing and sustaining a digital patient   29

 
 

28 https://onlinelibrary.wiley.com/doi/book/10.1002/9781118952788. 
 

29 Image from The Digital Patient, (2016), doi:10.1002/9781118952788. 
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4.2.3.3 Services 

 
The following are some specific AI services under development in the bio-data track. Some will               
be released with the beta version of SingularityNET in February 2019 and some are slated for                
later release based on ongoing work. 

 
Supervised Classification of Binary-Valued Data Using MOSES 

 
The SingularityNET agent accepts a data file with/and classification label information and            
program algorithm and validation parameters and returns a file of scored combo models and a               
ranked list of model features. 

 
User Interface for Supervised Classification of SNP or Gene-Expression Data Using           
MOSES 
 

A web-based interface accepts a data file input with category labels, provides an interface for               
setting algorithm and validation parameters, optionally solicits an Ethereum wallet address, and            
returns a file containing scored combo models and a ranked list of model features generated by                
the MOSES agent described in (1). 
 

Annotation of MOSES Results, or other Gene Sets, Using AtomSpace Knowledge Base 
 
A web-based interface accepts a list of gene names or reference IDs; optionally provides a screen                
to select from a list of reference knowledge bases, annotation types, and filtering parameters; and               
returns a table of the input genes and their annotations and/or a graph representation of the input                 
genes and their annotations in a selected standard graph format. 
 

Symbolic Regression on Genetics Datasets 
 
The SingularityNET agent accepts a genetic data package consisting of a genetic and numerical              
biomarker dataset, numerical outcome values associated with each sample, and program           
algorithm and validation parameters. It outputs a results file containing a model that predicts the               
phenotype number corresponding to that genetic data package. Optionally, either FFX or            
MOSES algorithms can be indicated by the user. 

 

Textual User Interface for Querying Result Sets or Knowledge Bases 
 
A natural language query parser based on GHOST (which is described in section 5.2.6) will               
allow context-dependent queries, given an AtomSpace (OpenCog’s database standard, described          
in section 5.2.7), with selected knowledge bases and analysis results as input. 
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Supervised Classification of Variant/SNP Dose-level Data Using MOSES 
 
The MOSES interface will be expanded to facilitate preprocessing of whole-genome variant data             
and a feature-variable format indicating allelic dose. 
 

Annotating Variant/SNP Lists or Other Genetic Base-level Data Using AtomSpace          
Knowledge Base 

 
The feature annotation service will be expanded to variant/SNP lists with optional allelic dose              
that will be annotatable through custom AtomSpace knowledge bases and will incorporate            
open-source variant annotation service code at https://github.com/DEIB-GECO/GMQL and        
https://github.com/bulik/ldsc. 
 

 
Neural Net Modeling of Sequence-Expression Links (Wrap Existing Open-Source         
Code) 

 
Using the sequence/variant feature format, a sequence and tissue type is inputted and a prediction               
of transcript expression is made from a neural net model:          
https://github.com/FunctionLab/ExPecto. 

 
Bio-NLP Textual Relationship Extraction 

 
Using existing open-source tools to tag bioentities (small molecules, genes, proteins, cell types,             
organisms, diseases, etc.), OpenCog natural language processing tools will extract relations           
among them from arbitrary plain text or pdf documents and output an AtomSpace representation              
of these relationships. AtomSpace knowledge bases will be updated with new information. These             
knowledge bases are useful for data mining and inference processes related to user             
investigations.  

 
Transfer Learning from Model Organism Knowledge Bases 

 
One of the major challenges in genetics is to predict the functions of genes and proteins and to                  
identify their regulatory pathways. Data mining and several machine learning techniques have            
been successfully applied to transfer gene annotation information between organisms. 
 

Cell-level Hypothesis Generation from ML Results Given AtomSpace Knowledge Base          
and Genome-scale Cell-Metabolism Model 

 
Given a feature list of variants, transcript expression levels, and/or protein abundances; a cell              
type and other context from experimental results data; and an AtomSpace containing background             
knowledge from public or proprietary customer sources, causal hypotheses are generated to            
explain the observed phenotypes associated with experimental data. 
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Tissue-level Hypothesis Generation from ML Results Given AtomSpace Knowledge         
Base and Cell Ensemble Model Including Extracellular Environment 

 
Knowledge-base contents and inference rule bases are combined with extracellular and           
tissue-level context to allow us to generate meaningful hypothesis-driven inferences based on            
clinical and laboratory parameters of experimental sample subjects. 
 

4.2.4 Probabilistic Graphical Models and Serious Games 
 
Deep-reinforcement-learning methods have lately become some of the most popular algorithms           
in AI, but for numerous reasons they have so far not found serious application outside of a                 
gaming environment. In our graphical model research, we are exploring ways to use networks to               
bring them out into practical usage; for example, to play the “healthcare game” to find the best                 
treatment for a patient with a complicated history or to work with practically any real-world data.  

The way we handle observational data is a bridge from game worlds, where we know the                
rules, to the real world, where we have to tease out the rules through science and epidemiological                 
techniques.  

In our graphical model research, we seek to translate real-world processes into Markov             
decision processes (MDPs), which represent the change in real-world states caused by different             
treatments. Once expressed in this form, they can be optimized by reinforcement-learning AI and              
other techniques. However, in order to express data in this form, attention should be paid to how                 
to tease causal relationships out of observational data. To do this we combine epidemiological              
concepts (such as the “do” function of Pearl, instrumental variables, and the potential outcomes              
framework) with recent developments in the new accuracy of deep neural networks.  

We are currently applying these methods to a curated dataset regarding the treatments of              
political campaigns, and intend to next use them to address healthcare data, including data from               
health insurance claims. However, while these are our current foci of experimentation, the scope              
of potential applications is extremely broad. 

 

5. SingularityNET AI R&D Overview  
 
For SingularityNET to achieve its goals of fostering superior AI applications across vertical             
markets and seeding powerful and benevolent artificial general intelligence, it must be more than              
just an outstanding marketplace in which narrow AI algorithms and services are matched with              
customers. The network must contain a certain percentage of AI agents that carry out abstract,               
general-purpose AI tasks. These lower-level AI agents can then be subcontracted by other AI              
agents carrying out more application-specific tasks and providing end-user solutions—and can           
learn rules more general than any one specific application area. 

Toward this end, SingularityNET Foundation’s AI team has been pursuing a variety of AI              
R&D projects, in many cases continuing and scaling up AI R&D that was already being pursued                
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in the open-source community or in universities. This section describes some of the most              
important of such efforts. The fruits of this R&D are expected to launch on SingularityNET               
during 2019 and 2020. As time goes on, we expect community contributions with increased              
intelligence and applicability, which will take most of the weight of development off the              
Foundation. 

This body of technical and scientific effort is unique in several ways. Nowhere else on the                
planet, outside of a handful of large technology companies, is a comparable scale of deep AI                
research being conducted in a manner compatible with scalable software engineering. Moreover,            
while the big tech companies are focused on deep-neural-net technology that exploits their large              
proprietary data stores, SingularityNET’s R&D is pursuing AI within a commons-based           
cognitive architecture.  

The AI services born of this R&D work will provide direct value to sophisticated              
SingularityNET customers who know how to use such services directly within their software             
platforms, and they will provide indirect value as subcontractors to other AI agents running on               
the SingularityNET platform. Such AI agents may lack more advanced functionalities and would             
need to submit queries to the AI agents created by the SingularityNET Foundation AI team to                
enhance their capabilities. 

 

5.1 Introduction 
 
The SingularityNET Foundation AI research programme reflects the combination and          
intersection of multiple previously existing research initiatives, including the following:  

● The OpenCog AGI project, founded by SingularityNET CEO and cofounder Dr. Ben            
Goertzel and colleagues in 2008 based on earlier work within the AI software firm              
Novamente LLC. A substantial portion of the OpenCog development team has been            
brought into the SingularityNET team to optimally develop and roll out OpenCog-based            
intelligence in a manner fully integrated with the SingularityNET platform. For general            
background on OpenCog, we recommend reading the CogPrime Overview Paper or the            
books Engineering General Intelligence Vol. 1 and Engineering General Intelligence Vol.           
2. 

● A related but separate research program originated in Dr. Alexey Potapov's lab at the              
ITMO University in St. Petersburg. It combines deep neural networks, probabilistic           
programming, and evolutionary learning within a common probabilistic learning-based         
theory of AGI. Dr. Potapov is now leading a significant team within the SingularityNET              
AI R&D group. 

● Research on integrating perception, movement, language, emotional understanding, and         
expression for controlling robots and other AI characters that is being conducted by a              
collaboration of the AI team at Hanson Robotics and the SingularityNET team. 

● Research on fusing deep neural networks with mathematical linguistics for computational           
language understanding and generation carried out in Sergey Shyalapin's lab in St.            
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Petersburg and now integrated with OpenCog-based work on probabilistic symbolic          
methods for language learning. 

● A body of research on AI for analyzing and guiding complex systems dynamics pursued              
in a loose collaboration by Dr. Debbie Duong and Dr. Ben Goertzel since they worked               
together on government-funded research in Washington D.C. in 2002–2007, and also in a             
collaboration between Dr. Goertzel and the Global Brain Institute at the Free University             
of Brussels beginning in 2001 (and represented on the SingularityNET team by Dr. Kabir              
Veitas from the Global Brain Institute). 

● Research on AI that integrates evolutionary learning with probabilistic reasoning and           
statistical learning in order to analyze biological data and other complex scientific data,             
that was conducted in the Hong Kong bioinformatics firm Mozi Health (now a close              
partner of SingularityNET).  

 
Most of the research areas summarized here have been covered in posts on the SingularityNET               
research blog; the treatment here provides a more concise summary. The team hopes to provide               
high-quality algorithms and approaches beyond the deep neural nets that currently dominate the             
big tech companies’ AI. 

The work of the SingularityNET Foundation AI R&D team is rigorously grounded in             
foundational principles of AI theory and cognitive science, including the OpenCog cognitive            
architecture and mathematical theories of learning and reasoning. By following these underlying            
principles in a carefully planned way, the team can deliver AI services that provide practical               
value and at the same time push toward the longer-term goal of benevolent artificial general               
intelligence. 
For simplicity, we have divided the research initiatives into two categories: (i)AI architectures             
and algorithms and (ii)measuring, modeling, and extending the SingularityNET network 

However, the work being done in these two categories overlaps on both the conceptual and               
code levels. 

 

5.2 AI Architectures and Algorithms 
 

5.2.1 Symbolic Learning and Reasoning 
 
Dr. Nil Geisweiller is leading a team carrying out advanced R&D on symbolic learning and               
reasoning in the OpenCog framework. The high-level motivation and conceptual background of            
this work is covered in research blog posts such as Introspective Reasoning Within the OpenCog               
Framework and Enabling Cognitive Visual Question Answering.  

This work involves integrating multiple AI tools, such as the probabilistic logic networks             
(PLN) logic engine, the MOSES automated program learning engine, the OpenCog pattern            
miner, and the ECAN attention allocation system, into a common framework based on             
OpenCog’s unified rule engine (URE).  
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Conceptually, the key theme is leveraging reflective meta-learning and cognitive synergy           
(win–win interoperation between different cognitive algorithms) to achieve higher levels of           
generalization and abstraction in machine learning/reasoning. 

 
 

5.2.1.1 Scalable, General Probabilistic Logic 
 
One essential initiative in this area pertains to probabilistic logical reasoning. Logical inference             
has been a central pursuit within the AI field since the 1960s, and modern computing resources,                
data sources, and theoretical advances make it feasible to integrate logical inference with             
probabilistic and statistical inference in an intricate manner.  

The ability to relate problems (theorems) to their solutions (proofs) in a transparent manner is               
particularly suited to complex tasks such as bringing heterogeneous processes to inter-operate            
with each other,� providing a link between machine understanding and human understanding,            
and enabling deep levels of introspection and meta-learning. 

The “generalization” part of artificial general intelligence is something that logical systems            
are especially good at, more so than deep neural networks or other forms of AI that originate in                  
pattern-analysis and “curve-fitting.” 

Although modern reasoning systems are quite sophisticated, they do have common           
deficiencies. They tend to be crisp (in other words, they do not handle uncertain knowledge and                
reasoning, or may do so in restrictive or inefficient manners) and generally inefficient, due to the                
inherent combinatorial explosion of building inferences. 

We have designed probabilistic logic networks (PLN) in conjunction with the OpenCog            
framework to overcome (or at least mitigate) these deficiencies.  

For instance, uncertainty is built into the logic in a mathematically rigorous way, allowing a               
PLN reasoner to ultimately become a substitute for both a logician and a statistician.              
Furthermore, by recursively applying its ability to handle uncertainty in a rigorous and general              
manner, PLN can express and solve problems about its own efficiency (also called “inference              
control” problems).  

Lastly, the engine that PLN is built on top of, the unified rule engine of the OpenCog                 
framework, has been designed with such inference control knowledge to guide its reasoning             
processes.  

These aspects together allow for the creation of a self-improvement loop ultimately leading             
to more and more efficient reasoning.  

The challenges in realizing this vision are significant. For instance, the transparency brought             
by reasoning has its computational overheads. Additionally, seeding the system with an initial             
efficient control policy that enables reasoning about its own efficiency is difficult in itself.              
Lastly, the more knowledge about inference control the system accumulates, the more costly the              
control decisions may become. 

The OpenCog architecture addresses these challenges by providing a collection of           
components, often universal by nature but featuring very different sets of strengths and             
weaknesses, designed to be combined synergistically – a principle called Cognitive Synergy. 

Some of these components, in addition to PLN, are 
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● MOSES, which stands for meta-optimizing semantic evolutionary search, an evolutionary          
program learner with some built-in capacities to learn how to search; 

 
● Pattern miner, a frequent subgraph miner operating on the AtomSpace, OpenCog's           

generalized hypergraph data storage; and 
 
● ECAN, short for economic attention networks, a resource-allocation system that          

dynamically estimates the importance of knowledge and processes in the system and            
assigns credits accordingly. 

 
Our current research pertains to each of these components, and how to combine them for both                
practical goals and theoretical understanding. 

 

5.2.1.2 Integration of Probabilistic Evolutionary Program Learning and Inference 
 
MOSES is an evolutionary learning algorithm that extends John Koza's “genetic programming”            
learning framework in several important ways. 

Genetic programming seeks to automatically learn computer programs by emulating the           
process of evolution through natural selection. In genetic programming, a population of            
programs is generated and evaluated on a fitness function. The unfit programs are discarded. The               
fittest programs survive and are combined and mutated to form a new generation. The new               
generation of programs then undergoes the same process of evaluation, selection, and so on. 

MOSES extends this paradigm by 

● considering a collection of subpopulations of programs, each focused on searching a            
different region of “program space”; 

● placing programs into a novel hierarchical “elegant normal form” which allows them to             
be analyzed more effectively; and  

● supplementing mutation and combination with a probabilistic model of which programs           
will be fit and using this probabilistic model to generate new programs.  

 
This has been shown to provide superior learning performance in a variety of cases. Applications               
have included genomic data analytics, financial predictions from heterogeneous data sources,           
and control of virtual agents in game worlds. It also yields a sophisticated framework that can                
require significant customization for each new application area.  

Most of MOSES’s computation is not explicitly framed as reasoning. This choice provides             
more efficiency but less flexibility. Fitness functions may be run in parallel with extreme              
efficiency, evaluating millions of candidates in seconds. However, a great deal of transparency is              
lost in the process. For instance, as only the best-candidate programs are kept for subsequent               
analysis, the bulk of the computation is discarded. 

The key, however, is that some of MOSES’s computation is framed as reasoning. It reasons               
on the probability that exploring a specific region of the search space is fruitful. These decisions                
may be infrequent, compared to the total volume of computation, but they are critical to the                
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success of the search. These anchor points constitute the bridges between efficient forms of              
computation (which are opaque) and the more holistic forms of computation (which are             
transparent), and they are the opening that allows the benefits of cognitive synergy to flow in.  

Fusing MOSES with PLN and other forms of reasoning and learning has been part of the                
plan since MOSES was created in 2005–2007. It is expected that this fusion will allow the                
algorithm to scale up to learn much more complex programs than is currently possible, thus               
progressing toward an AGI and also enabling a great variety of additional applications. 

In order to enable MOSES and PLN to work together effectively, we are now porting               
MOSES to the unified rule engine, with the critical decisions explicitly framed as reasoning and               
the rest remaining encapsulated as efficient, non-transparent computation. The existing          
mechanisms for inference control and meta-learning, currently present in the unified rule engine             
for use with PLN, will then become available to MOSES. 

 

5.2.1.3 Pattern Mining in Logical Hypergraphs 
 
The OpenCog pattern miner extends the existing tools for mining frequent and surprising             
patterns in databases, providing a uniquely powerful engine for mining frequent and surprising             
patterns in complex hypergraphs.  

The hypergraph is the data structure used within OpenCog to represent all forms of relevant               
knowledge in a unified way. For an exposition of why hypergraphs are valuable as a universal AI                 
representation framework, please read this blog post.  

The pattern miner has recently been re-implemented on top of the unified rule engine for               
greater scalability and configurability. It shines when dealing with large amounts of data that are               
complexly and heterogeneously structured: natural language data, multi-omics biological data,          
traffic data, financial markets data, and more. In these areas, a hypergraph with logical semantics               
is more effective than simpler representations like relational databases or feature vectors.  

One of the deepest applications of the pattern miner is to optimize AI algorithms such as                
PLN. It does this by looking for patterns in the choices in an AI algorithm that consistently lead                  
to better outcomes. 

For instance, given a trace of all decisions left by the unified rule engine during its execution                 
of a run of PLN reasoning, one can apply pattern mining to understand the context, the problem                 
to solve, the inference so far constructed, and the axioms of the system. The pattern miner then                 
constructs inferences by applying rules and evaluates whether or not a given inference is on its                
way to solve the problem. 

The pattern miner extracts surprisingly frequent hypergraph patterns from records of           
inference engine activity. One can already use these patterns to produce important inference             
control rules that speed up future inferences. Our recent work has shown that this can already                
serve as a start toward the complicated process of acquiring efficient reasoning. 

 

5.2.1.4 Guiding Inference with Nonlinear Attention Allocation 
 
In an AI system containing a large amount of data and/or a large number of cognitive processes,                 
the allocation of attention becomes critical. OpenCog handles this via a system called Economic              
Attention Allocation (ECAN), which allocates tokens of “artificial mone”’ between the nodes            
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and links in its knowledge hypergraph that represent units of short-term and long-term             
importance to the system and its overall goals.  

In collaboration with the Hanson AI team, SingularityNET has put significant effort into             
making the ECAN framework operate on large AtomSpaces and verifying that the way it directs               
attention is cognitively sensible and pragmatically effective. 

ECAN has many practical uses today. It directs OpenCog’s attention to allow OpenCog to              
generate natural language dialogue for the Sophia robot. When MOSES learns models of             
biological datasets and imports them into AtomSpaces, PLN can analyze them there. ECAN is              
essential in directing PLN’s attention during this process. It will also be critical for the general                
guidance of the URE’s rule applications. 

Learning good inference control rules is very important, but even with these, controlling             
reasoning can be complicated because combining rules optimally takes a lot of computation. If              
the unified rule engine had too many control rules and had to weight every possible relevant rule                 
to come up with the best decision, it would pause for an indefinite amount of time to deliberate,                  
stalling the system. 

Happily, we can also use reasoning to improve ECAN itself. ECAN uses a hypergraph of               
Hebbian links expressing how attention should be spread across data and processes, and this              
hypergraph is amenable to reasoning. Thus all components that can produce these Hebbian rules              
can be used to improve ECAN. For instance, pattern mining can be used to discover basic                
Hebbian rules and PLN can be used to discover finer ones, and so can MOSES. 

 

5.2.2 Integrative Genomics as a Case Study for Integrative AI 
 
As biology becomes an information science and information science becomes dominated by            
machine learning and other AI methods, it stands to reason that biology is becoming dominated               
by AI. To grapple with the systemic nature of disease and aging, it is necessary to do simulation                  
modeling, data analysis, and machine reasoning regarding the multiple body subsystems across            
numerous datasets. 

This emerging paradigm of medicine has been termed “P4 medicine that is predictive,             
preventive, personalized, and participatory” by systems biology godfather Leroy Hood.          
SingularityNET CEO and cofounder Dr. Ben Goertzel was an early practitioner of this view;              
since 2000 he has applied machine learning and other AI technologies to longevity and              
genomics, including in collaborative work with the CDC, NIH, and various universities. 

In this spirit, the SingularityNET AI team has chosen biomedical data analytics—in            
particular the analysis of genomics data regarding longevity and age-associated diseases—as an            
initial testing ground for integrating multiple AI paradigms within the OpenCog framework.  

MOSES is used to find patterns in genomic datasets. The small programs representing these              
patterns are then imported into the AtomSpace hypergraph representation. Next, the PLN logic             
engine is used to draw conclusions by combining the patterns with knowledge obtained from              
biological ontologies like the Gene Ontology project, MSigDB, etc. and with knowledge            
extracted from biological texts using OpenCog natural language processing technology. 

For example, when applied to genomic data obtained from exceptionally long-lived people,            
MOSES can tell us what genes or what combinations of genes tend to have the most significant                 
influence on these peoples’ long lives. PLN and reasoning about these MOSES models, together              
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with other knowledge, can give us the hypotheses about how these genes impact aging. This can                
be a powerful tool for suggesting new experiments to run and for suggesting diagnostics to               
identify a disease state or predict future disease or longevity. It can also be applied to discover                 
targets for either conventional drug therapy or gene therapies such as CRISPR.  

In 2019, the SingularityNET bio-AI team will release a series of publications describing             
novel discoveries about aging and disease that have been uncovered using these methods during              
its 2018 research. However, these exercises in AI refinement and prototyping have         
importance going beyond these particular results and this particular subdomain. These methods            
will serve as part of the AI core of the Singularity Healthtech Studio project, and they also have                  
general applicability beyond health-tech.  

For instance, in financial services, there is a demonstrated value to applying the MOSES              
learning engine to combine price, volume, global macro, company accounting, and news            
sentiment data into combinational predictive models. Financial text analysis software is           
relatively mature, and an extensive amount of structured data pertaining to listed companies and              
their internal structures and external involvements is available. The methodology refined by the             
SingularityNET research team in the context of genomics AI will be adapted to play a crucial                
role in the Singularity Studio fintech module. 

  

5.2.3 Neural-Symbolic Integration for Semantic Computer Vision 
 
Neural networks have been part of the AI field since the late 1940s, but their popularity has                 
waxed and waned over the decades. In recent years, multilayer hierarchical neural nets (better              
known as deep neural nets) have become extraordinarily popular due to their successes in              
analyzing various sorts of data, especially visual and auditory data.  

A few AI researchers believe this particular tool can be refined into a universal practical AI                
solution and even into an architecture for artificial general intelligence. However, most AI             
practitioners realize that different courses require different horses. Deep neural nets are the best              
solution for some problems, but other problems (in particular those requiring transparent,            
symbolic reasoning) call for other AI techniques. 

Symbolic AI approaches, such as logic engines, and program learning systems (which have             
been under development since the 1960s and 1980s, respectively) have historically demonstrated            
different strengths than neural networks. They have been better at generalization and abstraction,             
at planning processes (either in the physical world or in the domains of discourse and science),                
and at formulating novel high-level hypotheses.  

For example, although computer vision tasks can theoretically be formulated as tasks of             
logical reasoning starting at the pixel level, such reasoning would be hopelessly inefficient.             
Neural nets shine when applied to computer vision tasks. By contrast, it is hard to imagine neural                 
networks alone forming automated theorem provers. 

As we aim for a more flexible, broader intelligence, the need for both symbolic and neural                
components becomes clearer. Ultimately, the development of artificial general intelligence will           
most likely require a hybrid approach, and there are almost no purely symbolic or purely               
emergent (subsymbolic, neural) cognitive architectures. Most architectures have elements of          
both, although the symbolic/subsymbolic gap is far from being fully bridged. 
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The field of “neural-symbolic AI” explores methodologies for combining neural network and            
symbolic approaches into unified AI systems that manifest the strengths of both approaches.
Recent mathematical advances in AI theory using tools such as algorithmic information theory             
and probabilistic programming provide a coherent conceptual and formal framework in which to             
pursue this integration. SingularityNET AI scientist Dr. Alexey Potapov has carried out a             
significant body of both theoretical and practical research in this direction. Click here to see               
some of the relevant output of his lab at ITMO University in St. Petersburg before he joined                 
SingularityNET in 2018. 

The necessity for deep neuro-symbolic integration can be seen in the example of the              
image-understanding (or semantic-vision) problem. On the one hand, vision cannot be           
considered as a peripheral module that merely forms an input to the symbolic AI system. On the                 
other hand, even in the vision domain, which is most favorable for deep learning, purely neural                
systems are insufficient to capture compositional structure and to perform reasoning (especially            
if transparent, interpretable results are desirable). 

It should also be noted that even image classification systems can benefit from external              
knowledge graphs. Consider the problem of learning visual concepts and their relations: it might              
be necessary to both integrate neural networks with symbolic models and modify traditional             
neural network formalisms. Tasks such as visual question-answering (e.g., asking an AI, “What             
is the cat in the photo wearing?”) require more top-down compositional reasoning integrated into              
the bottom-up image processing. 

 

5.2.3.1 Visual Reasoning 
 
Reasoning about visual scenes is challenging because it requires subsymbolic inductive           
information processing and symbolic deductive inference.  

For example, suppose you want an AI to answer a question like “Are these two chairs                
similar?” This visual question-answering (VQA) requires top-down control of image analysis.           
Although this control can be implemented in the form of neural networks for simple questions               
using their embeddings, some VQA benchmarks have shown that this approach is insufficient             
and more compositional control mechanisms are required.  

More-complex questions like “What size is the cylinder that is left of the brown metal thing                
that is left of the big sphere?” are difficult to stuff in an embedding vector of a fixed size. It is                     
difficult to imagine that bottom-up processing can provide ready answers to such questions. 

Tasks that involve visual dialogues require a sort of short-term memory. Neural models can              
memorize how to conduct straightforward dialogues, but for dialogues with more complex            
compositional structure, both symbolic inference and memory are much more suitable. 

Another issue with contemporary deep neural networks (DNN) solutions is that different            
models are developed and trained for different tasks and even different benchmarks of the same               
task—such is the case for CLEVR and COCO VQA datasets. 

Advancing visual reasoning has many practical applications, including video analytics,          
robotics, semantic image and video retrieval, augmented reality, blind-assistance systems, and           
more. 

Due to all of these factors, the SingularityNET team approaches the problem of semantic              
vision and visual reasoning with the lens of cognitive architecture. Cognitive architectures are             
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integrative systems with working and long-term memory, knowledge representation, and          
reasoning engines intended for solving a wide range of tasks.  

More specifically, we utilize the OpenCog cognitive architecture with its probabilistic logic            
network to perform deductive inference and AtomSpace to maintain the knowledge base. In the              
case of VQA, link grammar and RelEx2Logic modules of OpenCog are being used now to               
convert natural language questions to PLN queries. Neural network modules that can be executed              
by PLN at runtime are being developed. The primary research interest is in studying and               
overcoming the limitations of both OpenCog and DNNs when they are applied jointly to              
different visual reasoning tasks. 

 

5.2.3.2 Concept and Representation Learning 
 
Visual concept learning is the primary component of all semantic vision tasks that are tightly               
connected with representation learning. Visual concepts are learned as classifiers (discriminative           
models) in many models developed for solving different reasoning tasks.  

These discriminative models are specialized for particular datasets, and they can be learned             
with enough training data. For real-world visual concepts, they are usually pretrained on labeled              
datasets such as ImageNet and Visual Genome. However, these datasets do not cover the whole               
variety of the visual world, and the tasks of unsupervised and one-shot learning are of               
considerable interest for general semantic vision. 

Learning disentangled and semantically decomposed representations with little or no          
supervision is essential to solving these tasks. This is usually carried out with generative models               
like InfoGANs or beta-VAE. However, representations learned by generative models are much            
less potent than those learned with discriminative models. Getting the best of both worlds is               
necessary.  

For instance, to learn semantic visual concepts, some degree of supervision is required.             
However, learning the relations between such concepts (together with both rich and disentangled             
representations) poses additional challenges because classes of objects are not mutually           
exclusive (dogs and llamas are both mammals, but they are not both pets), objects can be                
characterized with a variable number of attributes (a llama can be both brown and woolly), and                
so on. 

Our research aims to solve these difficulties and to integrate corresponding generative and             
discriminative models in visual reasoning pipelines. This can be of help in training models with               
less supervision and transferring them to new datasets in not only different visual reasoning tasks               
but also other areas.  

Suppose you want to identify a person across several images from different cameras with              
views that do not overlap. A model learned in one dataset will perform poorly when applied to                 
another. In practice these models are pretrained on a labeled dataset and should be deployed onto                
new camera sets, for which labeling is very expensive or impossible. Combining discriminative             
and generative models with the decomposition of person-embedding and nuisance variables can            
help to mitigate this problem. The same problem—a lack of labeled datasets and difficulty of               
unsupervised transfer learning—is also typical of biomedical and many other applications, and            
the same solution should apply. 
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5.2.3.3 Generalization and Invariance in Deep Neural Networks 
 
Learning visual concepts from few examples requires strong generalization. The system should            
identify the key features or latent variables that are invariant and separate them from variable               
nuisance factors. Unfortunately, generative models by themselves are not enough to solve this             
problem because neural networks are good at approximating functions inside the training set but              
not at extrapolating them beyond it.  

For example, even if a decoder network is explicitly trained to reconstruct rotated images in a                
certain range of rotation angles, it will fail outside that range.  

There is interest in achieving a general solution to the problem of generalization.             
Generalizing about spatial transformations can be hard-coded with the use of spatial            
transformers, but the more interesting problem is to achieve invariance to unknown a priori              
transformations.  

Although the problem of strong generalization is external to the vision domain, we do look at                
the possibility of improving generalization capabilities of neural networks with more expressive            
formalisms.  

For instance, we researched generative capsule networks (CapsNets) and hypernetworks          
(HyperNets), showing they performed better in generalizing certain forms of transformations. In            
particular, we study the possibility of learning disentangled representations with HyperNets, in            
which different types of factors of variation appear in the ordinary latent code and control               
variables. 

In addition to improving learning performance in general, such extensions can have different             
specific applications. For example, HyperNets can be used instead of spatial transformers when             
the model of transformation is unknown. They can also be used to invert (i.e., to construct a                 
decoder for) Faster R-CNN features or to design an image-matching system. 

 

5.2.3.4 Frameworks for Neuro-symbolic Integration 
 
Existing modular networks do combine these networks. However, they do so in a hard-coded,              
task-specific way where each network has an assigned task, and they include execution engines              
implemented in certain deep learning frameworks (such as Tensorflow or PyTorch). This makes             
these models automatically end-to-end differentiable, but at the cost of generality.  

It seems that it would be difficult to implement the whole cognitive architecture within such               
frameworks, and although neuro-cognitive architectures are being developed, they are much less            
mature than existing hybrid architectures. 

In turn, neuro-symbolic integration within hybrid architectures poses its own challenges. In            
particular, visual reasoning with OpenCog’s PLN supposes that there is a sequence of symbolic              
inference steps between deep neural networks grounding visual concepts and the final answer. In              
order to make these networks trainable, error back-propagation through inference traces should            
be available, or these traces should be “compiled” into Tensorflow, PyTorch, and other             
deep-learning frameworks.  

The SingularityNET team is looking at different possibilities to choose the most general and              
efficient way forward. 
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Furthermore, generative neuro-symbolic models might be even more challenging. Current          
examples of such models include variational autoencoders combined with Bayesian networks           
and trained with the use of a joint variational objective. However, learning the structure of the                
Bayesian network requires different inference algorithms. 

Probabilistic programming is a general way to define generative models. However, it either             
uses sampling-based inference, which does not scale well to deep neural networks, or gradient              
descent for parameter estimation. A framework for the hybrid inference is necessary. In our              
work, we investigate guiding sampling in probabilistic programming by symbolic deduction and            
combining the sampling with gradient-based and evolutionary learning in a unified framework. 

We believe deep neuro-symbolic integration is essential for scaling visual reasoning models            
to real-world problems.  

Domain knowledge could then be incorporated into the models. For example, one can             
imagine a VQA or video analytics system in a boutique that uses a product catalog with                
categories of products (handbags, scarves, and so on) to guide the inference. Or imagine an AI                
tour guide of Rome that analyzes images from a user’s smartphone and supports visual              
dialogues, making effective use of symbolic knowledge about sights.  

Of course, the desirable unified framework will have many more applications not only in              
visual reasoning but also in natural language processing and other tasks requiring simultaneous             
structure identification and parameter optimization.The most basic example is learning word           
embeddings simultaneously with word sense induction and word clustering into categories. 

  

5.2.4 Unsupervised Language Learning 
 
Making AI systems richly understand human language is critical for a wide variety of practical               
applications and for the quest to create AGI systems that can learn from and interact with                
humans and comprehend our culture and values.  

For most of its history, the academic field of linguistics focused on making careful              
formalizations of language structure (the simplest case of which is the sentence diagrams many              
of us learned to draw in grammar school), but since the advent of the internet there has been a                   
greater volume of work on “statistical linguistics,” the use of statistical and machine learning              
tools to find patterns in large volumes of textual data. 

There has been a particular focus in the computational linguistics field on “supervised             
learning” of linguistic information, which means applying machine learning algorithms to           
specially prepared linguistic resources, such as collections of thousands of sentences that have             
been provided with sentence diagrams via the labor of human graduate students. However, the              
limitations of this methodology are now being recognized, and more attention is being paid to               
“unsupervised” methods that learn how to handle natural language by merely looking at large              
volumes of raw text. 

There are many critical applications in this domain, but the ones we have focused on in                
SingularityNET, and OpenCog before, are the following:  

● Language comprehension. Translating information conveyed in natural language into         
structured knowledge that can be manipulated by AI reasoning systems (enabling           
applications such as question-answering and knowledge-discovery) 
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● Language generation. Creating systems that allow AIs to express their internal           
knowledge and data in human language 

● Dialogue. Creating systems that combine language comprehension, generation, and         
reasoning to carry out purposeful interactive dialogue with people 

 
Toward these ends, we have been pursuing a project in the area of unsupervised language               
learning (ULL) and specifically unsupervised grammar learning: creating a software that can            
ingest a large body of text in a specific language, such as English or Russian, and then output a                   
list of the grammatical rules of the language used in the text.  

This software is only a part of what is needed to create powerful language comprehension,               
generation, and dialogue systems, but it is a critical part nevertheless.  

Neither traditional linguistics nor supervised machine learning approaches have been able to            
comprehend the grammar of natural human languages well enough to support general-purpose            
natural language applications such as chat systems that can dialogue informally about general             
topics or scientist-assistant systems that can summarize the critical contents of research papers.             
Radical new advances are needed to achieve these goals, and we are well on the road to                 
achieving them. 

 

5.2.4.1 Approach to Unsupervised Grammar Learning 
 
Our approach to grammar induction is novel and combines multiple algorithms and multiple AI              
paradigms. Early results applied using a simple version of the methodology are discussed in              
Bridging the Language Divide. 

The critical step is to create a weighted link between each word in a sentence. In the simplest                  
case, these weights can reflect mutual information values between the words, calculated by             
looking at all co-occurrences of these words across a training corpus. If words have been               
assigned category labels, then the weights can reflect mutual information values between            
categories that are calculated by looking at all co-occurrences of words in these categories across               
a training corpus. 

Alternately, one can use a deep neural net (or other predictive language model) trained on a                
corpus to calculate the information value of the link between two word instances in a way that                 
takes into account the context of the sentence and of the overall discourse or document in which                 
the sentence occurs. There is an excellent variety of neural language modeling tools available in               
the recent computational linguistics literature, and our team is experimenting to see which tool              
provides the most reliable performance in this task. 

First, the system calculates weighted links between the word pairs in a sentence. A process               
called maximum-weight spanning tree (MST) parsing is then used to find a graph that fulfills               
two conditions: it matches the sentence, and it is a valid planar graph according to Link                
Grammar theory. Currently, we are using an MST parser implemented in Scheme for use with               
the OpenCog AtomSpace, and the relevant linguistic nodes and links are represented as             
OpenCog Atoms. 
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We may create categories comprising words with similar properties, where some of the             
properties are calculated based on the MST parses. Examples of properties are “being linked to               
the left to the word ‘walk’ in a lot of MST parses” and being linked to the left to the category C45                      
in a lot of MST parses.” 

The results of categorization may be fed back into the link-weight–determination process to             
be used as input for another round of MST parsing. 

Surprisingly frequent patterns may be identified in the corpus of trees obtained by MST              
parsing in this way. These patterns constitute the grammar rules learned by the algorithm. Some               
of the categories learned may be more semantic and some more purely syntactic, meaning that               
the rules learned can also span from purely grammatical to syntactico-semantic. 

This approach can be applied to ordinary grammatical English, but it can also be applied to                
informal English such as tweets or text messages. Applying it to a corpus of specialized English                
such as biomedical research abstracts yields a specialized grammar depicting the usage of             
language in these sorts of texts. 

For languages with complex morphology, such as Amharic, in which individual words can             
have multiple prefixes and suffixes and even infixes, the same algorithmic logic must be applied               
on the character level as well as on the word level.  

 

5.2.4.2 Stochastic Language Generation 
 
The above learning algorithm builds a set of Atoms in the OpenCog AtomSpace. These Atoms               
form a probabilistic model of the syntactic structure (and to a limited extent the semantic               
structure) of the input corpus. This probabilistic model may be used to generate language with               
the same structure. 

In the most straightforward approach, sentences may be generated relatively directly from            
this probabilistic model. This could be considered a form of “stochastic language generation,”             
which produces sentences that are coherent, sensible, and grammatical locally but lack a high              
level of semantic meaning once they go on long enough. In other words, they can generate a few                  
sentences, but not a meaningful longer document. 

Stochastic language generation can also be used to answer questions if one supplies a              
sentence fragment and allows the stochastic algorithm to complete the fragment. An example of              
such a sentence fragment is “The best thing about New York is ___________.” 

A more exciting and sophisticated approach is to find sentences that fit the probabilistic              
model and also satisfy an additional semantic constraint. This generates sentences that are             
linguistically fluid and syntactically correct and that also represent a specified chunk of semantic              
content. 

 

5.2.5 Semi-supervised Learning of Mappings from Language to Logic 
 
Syntactic parsing of natural language sentences, as pursued in our Unsupervised Language            
Learning (ULL) research project, is only part of the task of translating from unstructured natural               
language to a structured logical representation. It gets at a certain level of semantics but fails to                 
reach the level of more abstract semantics such as quantifiers, comparatives, multi-argument            
relationships, and so forth. 
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A related research project focuses on subsequent processing, mapping syntactic parses into            
sets of semantic logic expressions. This is a problem that mainstream computational linguistics             
has barely addressed at all, but it is critical for connecting symbolic inference engines (like               
OpenCog’s probabilistic logic networks) to natural language data or dialogue interfaces. 

During the last ten years, there have been multiple efforts within the OpenCog project to               
extract semantic information from natural language. This would allow OpenCog to reason on the              
information and build a knowledge base of the world—such as relex, relex2frame, and             
relex2logic. Although these efforts provided insights into the feasibility of different approaches,            
all of them had a common weakness: they were rule-based. These rules had to be written                
manually, without any automated learning.  

This meant that they could handle only sentences with simple linguistic structures, were             
restricted to English, and couldn’t scale to more complex sentences without significant effort to              
update multiple rules. It also meant that choosing the schema to represent additional             
sentence-level linguistic phenomena might break the effects of existing rules and that the rules              
did not account for relations across sentences. 

To go beyond these limitations, and achieve robust mapping into a knowledge representation             
that is rich enough to represent most sentence-level linguistic phenomena, we have chosen to              
work with the Lojban language and associated resources.  

Lojban is a constructed language with a formal grammar inspired by predicate logic. Because              
of its formal grammar, it provides the same syntactic unambiguity as some controlled natural              
languages. However, unlike them, it is not restricted to the linguistic phenomena of a root natural                
language and the limits of expressible semantics that come with it. This makes it possible to                
convey diverse day-to-day semantic constructs that exist in various natural languages. 

Lojban provides a natural language with a known formal grammar (like the link grammar or               
induced grammar that unsupervised language learning aims to learn) and a sturdy seed for              
unambiguous knowledge representation. Our Lojban project aims to answer the following           
questions: 

● How can we generate the rules that extract the semantic relations between concepts in a               
given sentence? 

● How can these rules be used to generate natural language from semantic relations? 

● How can the process of learning these rules from parallel corpora of Lojban-English             
pairs, involving relatively simple linguistic structures, be scaled to more complex           
linguistic structures? 

 

5.2.5.1 Rule Learning 
 
Our system aims to learn the rules that map semantics of a natural language (English for starters)                 
to the OpenCog representation of Lojban. It does this using corpora of Lojban–English             
translations. The Lojban sentences will be parsed into the OpenCog AtomSpace alongside the             
link-grammar parse of their English translations. Then the frequent or surprising patterns in the              
link-grammar parses will be mined. Next, the system will mine the Lojban parses that correspond               
to the English sentences with frequent or surprising patterns. The patterns mined from these              
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Lojban parses, along with patterns for the English sentences, will form the new rules that extract                
the semantic information from English. 

Theoretically, this approach should be able to learn rules that extract semantic information             
spanning multiple sentences. For example, given the input, “I'd like to be under the sea, in an                 
octopus’s garden in the shade. We would be warm below the storm, in our little hideaway                
beneath the waves,” this approach should be able to understand that the “little hideaway” in the                
last sentence is the “octopus’s garden” in the first sentence. This requires learning corpora with               
samples of entire Lojban paragraphs translated into English paragraphs. Instead of looking for             
frequent or surprising patterns in sentence sets, we will look for patterns across sets of               
paragraphs.  

 

5.2.5.2 Help Generate Natural Languages 
 
Probabilistic logic networks, semantic vision, or other processes may generate new knowledge            
involving the learned rules that wasn’t sourced from the natural language pipeline. If the system               
has to express this information to a human, then it has to express it in natural language.  

To do so, the syntacto-semantic rules learned can be used to map the information into               
natural-language-parse representations. This, in turn, will seed a stochastic natural language           
generation system that will generate the sentence. The generation system will be based on formal               
grammar learned by unsupervised language learning or a learned probability distribution over an             
existing link-grammar dictionary. 

 

5.2.5.3 Scaling to Complex Linguistic Structures 
 
The Lojban–English parallel corpora are very limited in quantity, in diversity of topics, and in               
the linguistic and semantic structures expressed. However, a similar (often worse) situation exists             
for some natural language pairs. A recent development in unsupervised machine translation has             
shown promising progress in solving this problem. 

This development involves word-by-word translation based on word-embedding (for learning          
a bilingual dictionary), a pretrained language-model for each language, and a process of             
recursive back-translation that involves using the model of the target language to correct the              
translation before the next iteration.  

Taking inspiration from this approach, for the Lojban–English pair, the link-grammar           
dictionary and the Lojban-to-OpenCog parser will be language models with probability           
distributions learnt from corpora. For the last step, iterative corrective back-translation, the            
translations could go through a rule-learning pipeline similar to the structure of the             
Unsupervised-PBSMT, where the rule base plays the role of the phrase table, or runs              
independently of the rule-learning pipeline that will result in a corpus that will be used later for                 
learning the rule base.  

The first approach is an integrated approach; it makes it possible to include PLN or MOSES                
in the iterative process. The advantages and disadvantages of this approach are an area of               
research. The second approach is modular; it generates a parallel corpus independent of using it               
to learn a rule base. 
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5.2.6 Goal-Driven Dialogue Systems 
 
Chatbots and sophisticated conversational AI systems have become increasingly popular in           
recent years, including general consumer tools like Alexa and Siri and a variety of enterprise               
chatbots, customer support chatbots, and so forth. Although many of these conversational AI             
systems are useful tools, they generally fail at being engaging conversation partners and often              
fail at achieving their practical purposes as well, leaving the user to achieve their goals via other                 
means (typing, point-and-click, or talking to a human).  

The technologies needed to make conversational AI agents truly useful include advances in             
language comprehension, speech synthesis and analysis, probabilistic common-sense reasoning,         
modeling of human emotions and mind states, among other things.  

One critical shortcoming, however, is more foundational to the design of conversational            
systems: the lack of a coherent cognitive architecture governing dialogue control.  

“Would you like some tea?” is a simple morsel of everyday conversation. Yet it requires               
complex understanding of the world: we need to know that making tea is one of the things we are                   
capable of doing, that other humans sometimes like to drink tea, that a teakettle and tea bags are                  
nearby, and many other things. We believe that an AI generating dialogue should have a model                
of the self, the other, and the situation and a desire to achieve specific goals in a particular                  
situation relative to its model of the self and the other. If it does not, it will lack the richness and                     
responsiveness of human conversation and will fall short in important practical respects.  

Current work on AI dialogue systems involves neural networks, rule-based approaches, and            
hybrids, all with varying levels of functionality. However, these systems are mainly focused on              
modeling linguistic structures available in a particular corpus and extracting the intent from what              
has been said without much accounting for inputs from other sensors and without much focus on                
overall cognitive modeling of the context of the dialogue. 

This approach may be sufficient for building a customer service assistant or a simple              
question-answering system that is restricted to a single domain and interacts with a single              
individual. Restricting the breadth and depth of the conversations makes it possible to more              
easily build and maintain such systems. 

On the other hand, SingularityNET's conversational AI team has been primarily focused on             
building a dialogue system that can handle multiple domains and group conversations, take into              
account multiple sensory inputs and associated models, and be a delight for developers/authors to              
build and maintain their agents on. This work is being carried out in conjunction with the Hanson                 
AI team at Hanson Robotics, with one key application being lifelike dialogue systems for Sophia               
and the other Hanson robots. 

These teams are developing the general holistic organism scripting tool (GHOST), a            
framework based on OpenCog, as a solution to these challenges. Sophia and other Hanson robots               
are currently testing GHOST in social robotics.  

GHOST is based on OpenPsi, a framework for modeling the relationship between contexts,             
actions, and the goals that are impacted by the actions and choosing an action that satisfies a                 
prespecified utility function. As a result, GHOST can account for multiple sensory inputs to              
extract intents, make abstract inferences about the situation, and be driven by specified goals. 

In a GHOST-based dialogue system, everything begins with high-level system goals and then             
subgoals that may be either explicitly specified or learned by the system. Cognitive algorithms              
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are then used to identify the critical features of the current context, unifying multiple inputs:               
linguistic inputs and any other available sensory inputs or inferences. The system then chooses              
whatever action is expected to maximize its goal achievement given the observed and inferred              
context. This may be a speech action or some other type of action, such as a movement in the                   
case of a robot, a messaging action in the case of an online personal assistant, and so on.  

In this way, the give and take of a conversation is embedded in a broader cognitive context,                 
where goal orientation and context analysis/inference are the foundation from which the            
conversation flows. 

 

5.2.6.1 Intent Classification 
 
Extracting the intent of an utterance requires an understanding of the semantics of a sentence as a                 
function of the broader conversation. This can be done using existing tools, to a limited extent,                
but the work of SingularityNET's natural language research team is expected to expand the              
breadth and depth of intents that can be extracted from linguistic structures. 

For amplifying the signals gleaned using natural language processing, we will explore            
integrating auditory and visual inputs. This will require clear models of the physical and social               
worlds of interactions.  

 

5.2.6.2 Dialogue Representation and State Tracking 
 
GHOST uses ECAN, OpenCog’s “economic attention allocation” framework, to determine what           
to give attention to in a particular context. This allows GHOST to handle multiple domains               
without developers or dialogue authors having to specify brittle conversational flows between the             
domains. This capability is the subject of current active development. 

Although the current GHOST system can make transitions between prespecified domains of            
conversation, it is not great at tracking those transitions. How these transitions should be              
represented, such that they are amenable for dialogue state tracking, is also being explored              
currently. 

Dialogue state tracking is closely related to action selection in OpenPsi. This is because the               
dialogue system specifies a conversational flow using OpenPsi goals, the relationships defined            
between them, and a utility function used during action selection.  

Another avenue of current research is representing and tracking states in group conversations             
and determining how they evolve through time. 

 

5.2.6.3 Authoring/Development Interface 
 
Developing an application using GHOST requires choosing goals, modeling the relationships           
between them, and describing alternate conversation flows per domain. Learning the goal system             
is not a focus at the moment, though it will become one eventually.  

We plan to investigate ways to simplify the specification of the structure of conversation              
flow using reinforcement learning and other machine learning approaches. Our intention is to use              
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GHOST-based conversational interfaces in developing (or teaching) either a domain-specific          
GHOST-based conversational system or a general-purpose one.  

 
 

5.2.7 Distributed Processing for Semantic Hypergraphs 
 
Many of our R&D projects use OpenCog as a foundation. OpenCog has many strengths, such as                
a common framework for representing knowledge used by multiple AI algorithms and a way to               
run multiple AI algorithms together so that they can cooperate and share intermediate             
representations.  

However, in its current form, OpenCog also displays some operational weaknesses. For            
instance, it can leverage distributed processing across multiple machines only in a relatively             
limited way. In order to fully utilize OpenCog-based AI within the SingularityNET decentralized             
framework, we need to improve OpenCog’s distributed scalability. 

The critical task here is to redesign or re-implement OpenCog's AtomSpace hypergraph            
knowledge store using a distributed, robust, and scalable architecture. This will improve the             
ability of OpenCog to process huge volumes of data and ensure its reliability and efficiency               
while providing services on SingularityNET. 

OpenCog uses the AtomSpace to manipulate its knowledge base and share it among its AI               
components, which access and update this base concurrently. So the AtomSpace can be seen as a                
kind of shared database that AI components query to gather information and update to improve               
the overall stored knowledge. 

In real-world AI applications, the amount of data required to achieve interesting results tends              
to be very large. This means AI components need an efficient search engine to extract relevant                
information from the AtomSpace so that they can gather the necessary information in a              
reasonable amount of time. This role will be fulfilled by the Distributed AtomSpace.  

The Distributed AtomSpace is a new component that will replace AtomSpace (or use it under               
the hood) to manipulate large OpenCog knowledge bases and provide efficient querying for AI              
components working concurrently, which will allow reliable OpenCog-based SingularityNET         
services. 

 

5.2.7.1 Distributed AtomSpace x Distributed Database 
 
Why are we creating the Distributed AtomSpace instead of just using an existing distributed              
database system? It is challenging to achieve all the scalability requirements while relying only              
on a distributed database management system (DBMS) because AtomSpace has at least three             
requirements that no DBMS covers simultaneously: 

 
Knowledge Representation 

 
OpenCog's knowledge representation does not fit well in relational, key-value, or even graph             
databases. We could map OpenCog’s nodes and links representation to relational tables,            
key-value hashes, or graphs, but the indexing mechanisms used by the corresponding DBMS             
hampers the efficiency of some of the types of queries performed by AI components. An               
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example of a query that is challenging to optimize is pattern matching; i.e., the search for                
subgraphs that match a given pattern with wildcards and variables that need to be unified. 
  
 

Concurrency and Data Integrity 
 
Concurrency in OpenCog can happen on a logical level, as when components work on the same                
object, or on a semantic level, as when two components work on the same knowledge-base               
element (for example, a concept). 

Data integrity policies, in this case, need to manage a configurable tradeoff between integrity              
and performance. In other words, data integrity policies need to balance—on the one             
hand—ensuring that each component see the changes the other makes to a concept and—on the               
other hand—allowing each component to change concept properties without delay. 

Determining the value of a concept property concurrently changed by two or more             
components is not trivial. This operation (referred to as “merging” in OpenCog) may require              
complex procedures with side effects (chained changes in other elements of the knowledge base)              
and can differ according to the type of concept involved. 

 
Locality of Reference 

 
Database management systems use particular definitions of locality to implement caching and            
load-balance policies. Existing systems assume that locality is temporal, spatial, or one of a few               
other types.  

None of these is a good fit for OpenCog’s knowledge base. Proper cache hierarchy and               
load-balance policies to OpenCog must be driven by contextual locality. This type of locality              
tends to keep together knowledge-base elements that are semantically related in a given context. 

For example, consider two AI components C1 and C2. C1 is processing texts in natural               
language, and C2 is analyzing spatial–temporal maps. Both of the AI components need to access               
knowledge-base elements that represent “numbers.” 

For C1, any elements representing “lexical category” that are related to a given “number” are               
relevant and should be kept nearby. For C2, any “lexical category” elements are entirely              
irrelevant. If C1 and C2 are running in the same knowledge base—for example, if both C1 and                 
C2 are helping to control a robot—the cache hierarchy policy will need to consider different               
contexts to decide how elements should move in the cache hierarchy. 

 

5.2.7.2 Extending a Distributed DBMS 
 
The approach we are taking in our Distributed AtomSpace project is a hybrid solution that               
incorporates a distributed DBMS along with other custom components that mitigate the problems             
mentioned above. This is represented in the figure below: 
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Figure 14. Components of distributed AtomSpace 

  

AI components use the same API to access a Distributed AtomSpace as they would for a regular                 
AtomSpace. However, a distributed DBMS (with its hierarchical cache and load balancer) is             
used to provide scalability. 

Pattern Index is a search engine that allows queries for pattern matching. It uses an inverted                
index to provide efficient lookup. The index itself needs to be persisted, and this may or may not                  
be done using the same DBMS mentioned above. 

The Atom DB and the AtomSpace form the cache hierarchy. The AI Component uses              
patterns to define which element relations are relevant and provides this context information to              
drive the caching policy. 

 

6. Measuring, Modeling, and Extending SingularityNET 
 
SingularityNET is a platform and framework for hosting AI algorithms and systems of multiple              
types. Some live within individual SingularityNET agents, and others span multiple agents in a              
distributed way.  

However, the SingularityNET decentralized AI network as a whole may also be considered a              
holistic AI system in its own right, in which the individual AI agents in the network are                 
subcomponents of an overall “society and economy of minds” that is itself a kind of coherent                
mind. 
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To realize this decentralized network intelligence, we require methods for analyzing and            
measuring intelligence in complex, self-organizing networks. Generic AI tools such as           
OpenCog’s pattern-mining and reasoning engines can be used for this purpose, but there is also a                
need for AI tools and related tools oriented explicitly toward understanding the intelligence of              
networks. 

There is also great potential for enhancing the intelligence and efficiency of SingularityNET             
by making improvements to its underlying mechanisms of exchange and service discovery,            
among other things. However, to explore such improvements effectively requires quality tools            
for studying complex networks. 

This aspect of R&D is expected to intensify as the network attracts a rich variety of AI agents                  
from various authors and as the analysis and coordination of this complex network becomes a               
challenge that must be met by specific AI tools.  

 

6.1 Symbolic Interaction–based Complex Network Simulation Modeling 
 
In its early stages, the network of interactions among AI agents on SingularityNET will not be                
excessively complex, and analyzing and regulating the network dynamics will be           
straightforward. As the population of agents grows more complex, however, and the number of              
agents outsourcing work to other agents in complex patterns increases, then the understanding,             
regulation, and ongoing design of the network will become significant and fascinating            
challenges. 

Essentially the only way to understand and manage a complex network of this nature is via                
simulation modeling. Toward this end, SingularityNET researcher Dr. Debbie Duong has led the             
development of a simulation engine capable of modeling the complex economic and cognitive             
dynamics that will occur within a mature SingularityNET. Experiments with this simulation            
framework currently focus on aspects of the SingularityNET adaptive reputation system           
designed by SingularityNET scientist Dr. Anton Kolonin. 

The design of the SingularityNET simulation framework is based on social and economic             
theory and enables the use of evolutionary algorithms and neural networks within the minds of               
coevolving autonomous agents. Agents in the simulation form social institutions as they fulfill             
tasks, communicate, and employ one another in a marketplace. 

The framework is designed to support micro–macro integration and model a system of social              
roles and institutions that emerge from social psychology and micro sociology. Lower level             
phenomena that are modeled include symbolic interactionism (from sociology) and cognitive           
dissonance (from psychology). We simultaneously model micro–macro integration in         
economics, including the emergence of market institutions from the utility-seeking actions of            
game theory.  

In early experiments with the simulation, we have modeled prejudice and racism, status             
symbols, social class, a role-based division of labor, price, a standard of trade (money), cultures               
of corruption, political polarization, marketplaces, and competitor ecosystems. This preliminary          
work has demonstrated that the simulation framework can encompass a full range of social,              
economic, and cultural phenomena. This is essential, as it is difficult to foresee what sorts of                
dynamics will arise in a mature SingularityNET that is coupled with a rich variety of external                
human and computational systems. 

75 

https://singularitynet.io/team/
https://blog.singularitynet.io/singularitynets-first-simulation-is-open-to-the-community-37445cb81bc4
https://singularitynet.io/team/


 

The critical aspect in the design of our SingularityNET simulation framework is also the key               
component of decentralization: autonomy. This not only includes autonomy of action—the           
ability of the agent to fulfill its utility as it sees fit—but also autonomy of perception—the ability                 
of the agent to freely interpret its environment, including communications, in a way that fulfills               
its utility.  

Unlike many coevolutionary systems, in our approach, fitness for groups of agents is not              
averaged across the agents. Rather, agents solely seek their personal utility. Since the agents can               
signal to one another and have the autonomy of perception to interpret these signals, they learn to                 
classify and contract with other agents to meet their needs.  

In our simulation, the agents assign other agents to groupings that they find useful. These               
groupings help agents find other agents to use, and the groupings eventually become             
institutionalized roles when agents find it to their advantage to share their beliefs about the               
groupings. Agents can exert more pressure as a group than they could alone; consider, for               
example, the group of natural customers and the group of producers of some product type.  

As in the theory of symbolic interactionism, agents find it to their advantage to behave               
according to the beliefs others have about them. These self-organized groupings are social roles              
and institutions. They emerge from micro-level utility-seeking symbolic interactionism. Thus,          
agents are not “assigned” to groups as in many cooperative coevolution programs; rather, groups              
emerge from utility-seeking interaction.  

Our process of micro–macro integration and emergence improves upon the averaging           
techniques of cooperative coevolutionary fitness. These techniques do not attempt to assign            
credit (which would limit the ability of agents within groups to take on similar roles in other                 
groups). In our system, assignment of credit and thus feedback between agents occurs through              
the price signal. Through the price signal, agents of different intelligence capacities are             
incentivized to take on the role that is most valuable to others. Agent cultures develop and last                 
beyond the life of an individual agent. Old AIs guide new AIs into their most lucrative role in                  
this self-organized system.  

This general simulation approach has been leveraged in different forms in Dr. Duong’s             
previous work and has been labeled symbolic interactionist simulation of trade and emergent             
roles (SISTER). In our early SingularityNET research we have used SISTER to model real              
societies (to test social policy) and to generate AI systems in artificial societies. 

 

6.1.1 Agent Selection in Simulated Networks 
 
In our current work, we apply SISTER to help diverse AIs of different capacities self-organize to                
solve problems. These AIs cooperate and compete in more complex ways than present-day AI              
ensembles.  

SISTER creates a semantic space by which agents can learn their role in an emergent system.                
In our simulation of SingularityNET, many different AIs come together to solve the problem of               
choosing, parameterizing, and assembling Python programs—and these Python programs are          
themselves AIs.  

We are currently using CMA-ES as an AI in each SISTER agent, but any scalar or discrete                 
AI method can be used in any combination of agents. There is a blackboard (that can be either                  
global or localized) on which agents bid for other agents. Customers develop tests based on their                
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previous experiences of which suppliers provide good services and use these tests to choose              
suppliers. Customers also learn criteria regarding the supplier’s price. Lastly, there are criteria             
regarding the “sign” the supplier displays, as discussed in the next section. 

 

6.1.1.1 AI Agent Signs in SISTER Systems 
 
The sign can be a float vector or a string of zeros and ones. The sign starts out meaning nothing,                    
but agents learn to use it to identify themselves as they become more successful at making their                 
customers succeed. In doing so, the sign comes to mean an implicit set of requirements.  

The process by which signs come to have meaning and agents group into types that can solve                 
use case is as follows:  

In the beginning of the simulation (before agents have learned anything), a customer (Carl) is               
looking for a “clusterer” service to cluster a dataset. Carl requires that the clusterer pass a                
silhouette test and will take it for any price under 23 AGI tokens. Because he hasn’t yet learned                  
what sign to look for, he generates a random requirement for the sign. 

Two clusterers on the network pass Carl’s test and have a price under 23 AGI. One of them                  
(call it Chloë) happens to have a sign closer to the arbitrary sign Carl seeks. Carl uses Chloë’s                  
services, and both improve their utility on the network. Thus, Carl learns (by reinforcement) to               
look for a similar sign next time he wants to hire a clusterer. Chloë The Clusterer learns to                  
display such a sign for its clusterer services. Since the customer is looking for a sign, other                 
agents displaying the sign can come in on the trade. In this way, the sign comes to mean                  
“clusterer.”  

Let us now suppose that Chloë subcontracts with another service, a vector-space creator             
named Victor. In this case, Victor will get money only if someone hires Chloë. So the sign that                  
the vector-space creator displays to its clusterer customer will come to mean “I can help you pass                 
the silhouette test.”  

However, Chloë is not the only customer that Victor The Vector-Space Creator has. Victor              
also sells services to another clusterer, who is named Claude. Claude is not hired on the basis of                  
the silhouette test; he is hired by Molly, who has been tasked with making a model that fits a                   
particular dataset well.  

So Victor’s sign now also means that he can help Molly fit her models to the data by means                   
of helping Claude The Clusterer. Victor’s sign means he can help in a particular, emergent set of                 
use cases that provide utility, given the capabilities of the competition.  

Now suppose a new agent comes into the simulation and displays a sign indicating it can                
provide “clusterer” services. It will receive requests to fulfill myriad requirements, and it will              
receive offers from vector-space creators because the network has learned that clusterers require             
the services of vector-space creators. If the agent can perform the services effectively, it will               
receive selective pressure to keep displaying the sign. If it can do a better job than its                 
predecessors, it may not buy the services of vector-space creators but rather something else to               
please its customers. If it cannot do as well as its predecessors, it receives selective pressure to                 
display another sign denoting something at which it is more competent. 

In SISTER systems, the signs form a utility space of similar requirements and their typical               
implementations. As the simulation goes on, agents become competent, a competitive system            
develops, testing thresholds rise, more tests are required, price thresholds rise, and signs come to               
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have more precise meanings. The tests for unsupervised methods (like clusterers) are weak, but              
the aggregated effect of multiple weak tests, from groups of customers, groups of their              
customers, and so on, is effective in shaping performance. 

 

6.1.2 Social Algorithms to Solve Social Problems 
 
In prior work that involved applying SISTER for US government agencies, we used             
coevolutionary AI to help solve social problems. One line of our research is to understand the                
origins of prejudice and stereotyping and how policy measures can mitigate the problem.  

Using agents that each have a recurrent neural network for a mind, we simulate how persons                
of different ethnicities or genders can, though they have equal inner talent, nevertheless come to               
be misunderstood institutionally and be forced into social roles that do not fulfill their talent               
potential.  

We also study social media algorithms such as PageRank that overrate persons of one              
stereotyped class and underrate persons of another stereotyped class. We look at how this forms               
social class and oligarchy and at alternative social media algorithms that are not only more just                
but result in better utility for almost every stakeholder.  

We then analyze digital protections against prejudice and oligarchy. We look at natural social              
protections that are absent in social media and that result in vulnerability to psychological              
manipulation. In particular, we study information warfare and its effect on populations through             
models of psychological cognitive dissonance implemented with recurrent neural networks in           
agent minds. We show the development of political polarization in society as a whole and               
compare it to more standard political models, such as those based on median voter theorem when                
not under the influence of information warfare.  

Given this model, we test policies to heal the divide. We look at the soft equilibria of social                  
institutions and how corruption can spread through society via hybrid warfare tactics that             
undermine social institutions. We examine the effects of such tactics on individuals as well as               
how society may heal from the resulting breakdown. 

It is important to note that many of the types of phenomena that we have modeled in actual                  
human societies can be expected to occur in a mature SingularityNET network. The formation of               
oligarchies, the overrating of classes of agents due to stereotypes, and the emergence of              
corruption and polarization are all phenomena that can occur in AI agent systems as well as in                 
human societies.  

In order to have an adequately functioning large-scale SingularityNET, we need to prevent             
these sorts of phenomena achieving any level of prevalence; the best way to do that is to                 
understand the conditions under which they can arise and the potential methodologies for             
counteracting them by experimenting with appropriate simulation models. 

To apply this sort of modeling in a fine-grained way to real-world situations (among either               
humans or AI agents) requires using real-world data to condition critical aspects of the              
simulation. We offer three ways to get the social environment into a model. 

One is through creating a Markov decision process in which the effects of policies are taken                
from observational data in a manner that teases out causes. We use instrumental variables, the               
“do” from Pearl, and the potential outcomes framework to ensure that the causal connections of               
the Markov decision process are entered correctly.  
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Next, we recognize that in a complex system, we can’t just put the data in directly; feedback,                 
network effects, and mutual causation have created the observational data. We use            
coevolutionary tools and run a simulated form of the data through multiple models to recreate the                
same set of virtuous and vicious cycles found in the observational data records. 

Finally, it may be difficult to get the data into the ontology of the simulation (particularly for                 
free-text data). We offer a clustering technique that is based in coevolution in which only a few                 
exemplars are needed to seed the clusterer to the same ontology as the model. 

 

6.2 Tononi Phi for Measuring Integrated Information in Complex Cognitive Networks  
 
It is difficult to measure and analyze the overall state of complex cognitive AI systems. We are                 
currently experimenting with the Tononi Phi coefficient as a tool for measuring the overall level               
of “integrated information” in various complex AI networks, including SingularityNET itself, the            
OpenCog AI framework, and Hanson Robotics’ humanoid robot Sophia.  

In 2004, University of Wisconsin psychiatrist and neuroscientist Giulio Tononi created a            
detailed and evolving system and calculus for studying and quantifying consciousness that he             
called integrated information theory (IIT). The Phi coefficient defined in this framework            
measures the level of holistic information integration in a system. It has been posited by Giulio                
Tononi and others that Phi is a fundamental measure of the “level of consciousness.” Regardless               
of its interpretation, it is an interesting measure of a consciousness-related property of a complex               
cognitive system. Targeting Phi maximization may lead to worthwhile results. 

Phi also has potential as a feedback mechanism to tune parameters of complex dynamical              
systems and encourage the emergence of high-level network structures. In this manner, IIT and              
Phi may serve as additional tools for analyzing complex network structures, developing true             
AI-based social and emotional robotic systems, and creating better and more intelligent general             
AI services. 

We have experimented with measuring Phi across time series generated by OpenCog’s            
ECAN attention-allocation module while the system parsed and semantically analyzed a series of             
short documents. We have also calculated Phi values while the OpenCog system controlled the              
Sophia humanoid robot as she led a person through a structured meditation session. 

In the latter experiment, due to the difficulties caused by computational growth, we also              
experimented with a new methodology: pre-preprocessing the data using independent component           
analysis (ICA) to reduce the problem dimensionality. In both experiments, we compared the Phi              
value time series obtained with the time series of events in the external situation and behavior of                 
the OpenCog system. Qualitatively, we found correspondences between changes in Phi and            
changes in the situation and behavior of the cognitive system, which provides preliminary             
validation for the methodology. 

As we continue IIT and Phi experimentation, one of our goals is to create an additional tool                 
to measure complex emergent phenomena in order to guide the development of            
better-performing, more-intelligent AI services. By providing a robust theoretical method of           
quantifying interconnectedness, IIT can ultimately lead to improved cooperation both within and            
among various system components. 
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6.2.1 Tuning Parameters 
 
As a measure of system connectedness, Phi/IIT will be used to improve many of the complex                
network structures underlying many AI services. IIT and Phi measurements can contribute to             
better-quality services by establishing an additional feedback loop to tune the many free system              
parameters in complex dynamical systems. The diagram below illustrates a representative           
feedback loop in the ECAN module. PLN, MOSES, and other tools would have similar              
diagrams. 

 

 

Figure 15. A representative feedback loop diagram for the ECAN module 

 

6.2.1.1 Quantifying Cognitive Measures in AI Systems 
 
The concept of cognitive synergy is central to the OpenCog AI framework. We will apply IIT                
and Phi measurements to larger-scale structures to facilitate both inter-module and intra-module            
parameter tuning. Exploring IIT in this manner will create synergies between a number of              
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OpenCog’s primary modules and enable approaches to general problem-solving that are more            
comprehensive and fundamentally more robust (i.e., better able to overcome “stuckness”).           
OpenCog modules and tools with which we will experiment include the following:  

● PLN. A probabilistic logic engine based on forward-chaining and backward-chaining          
within the probabilistic logic networks formalism 

● MOSES. An evolutionary program-learning framework incorporating rule-based program        
normalization, probabilistic modeling, and other advanced features 

● ECAN. “Economic attention allocation” engine based on nonlinear dynamics that assigns           
attention according to the spreading of ShortTermImportance and LongTermImportance         
values and Hebbian learning 

● Pattern mining. Greedy hypergraph pattern mining based on information theory 

● Clustering and concept-blending Heuristics for forming new ConceptNodes from         
existing ones. 

  

Higher Phi values should correlate with interesting cognitive behaviors emerging from such            
systems (and initial experimentation suggests that this is the case). Phi measurements of “system              
connectedness” can enhance services by, for example, quantifying the synergy between different            
network substructures, modules, and tools. 
 

6.2.2 Impacts on Specific SingularityNET Services 
 
In social and emotional robotics, preliminary demonstrations suggest that Phi correlates with            
qualitatively interesting behavior during Sophia’s meditation sessions. We plan to pursue further            
research into this relationship between Phi and Sophia’s perceptions and actions within the             
Loving AI project, a collaboration with Hanson Robotics, iConscious, and other parties focused             
on creating robots and avatars that display unconditional love toward people. Through Phi             
measurements during human–robotic interaction, Phi research could also improve facial          
expressions and movements as well as language understanding and speech synthesis. 

The ability to improve system performance and intelligence (both within individual           
components and via synergies between components) should lead to better SingularityNET           
services in multiple domains, including our initial set of network analytics, social robotics, and              
bio-data analytics. 

Specifically, in the area of network analytics, in addition to improving parameter tuning,             
overall Phi measurements can 

● provide improved measures of causal relationships for social network analysis and           
visualization and probabilistic graphical modeling as a result of Phi’s inherent           
cause-and-effect repertoires; 
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● help quantify the degree to which system phenomena emerge from simple rules; 

● improve the study of cooperative and competitive connections in networked artificial           
intelligence between distributed AI programs and the processes by which these           
algorithms self-organize into better solutions; and 

● aid in the study of virtuous and vicious feedback cycles in real-world systems by              
quantifying a system’s integrated connectedness and improving its cognitive synergies,          
ultimately helping find the best policies to achieve goals. 

 

6.3 Offer Networks for Optimizing Complex Exchange Patterns in Agent Systems 
 
OfferNets is a research initiative aimed at creating a radically decentralized economy powered             
by diverse, independent, interacting agents. It combines two R&D paths that are tightly related              
yet embrace different levels of abstraction: 

● A massively scalable computing model and a software framework supporting          
asynchronous execution of heterogeneous processes concurrently using a shared data          
structure and able to model any mixture of emergent and controlled coordination among             
them. � 

● A decentralized economy providing an alternative to purely currency-based exchanges.          
This economy features a complex network of interactions and optimizes reciprocal           
exchanges of goods and services by finding agents with compatible and complementary            
preferences and coordinating their interactions. � 

 
Research and development of (B) is crucially dependent on (A), but the importance and              
application of (A) are much broader than those of (B). This means that we are designing the                 
decentralized computing and simulation modeling platform to be maximally horizontally          
scalable beyond applications for OfferNets economy. 
 

6.3.1 Decentralized Computing 
 
The concept of open-ended decentralized computing is being developed within the OfferNets            
research initiative. It allows heterogeneous asynchronous processes to achieve spontaneous or           
guided compatibility via indirect communication through a shared topological space.  

The goal of this model is to create large-scale simulations of decentralized systems, including              
economies, different combinations of governance regimes and structures, multiple currencies,          
barter networks, and more. Even though the model is inherently decentralized, it does allow for               
the implementation of different levels of centralization. 
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6.3.2 Simulation Engine 
 
The software architecture on which OfferNets simulations are run consists of two large parts: 
 

● An actor framework for powering asynchronous execution of heterogeneous agents’ logic           
and peer-to-peer interactions via message passing � 

● A graph database powered by an enterprise-level graph database server for keeping and             
updating the topology information of the network and enabling indirect communication 

 

6.3.3 Monitoring and Analysis Engine 
 
Simulation modeling requires the collection and analysis of information about events happening            
in the system. Since a decentralized applications framework by definition does not have a single               
point of access to the system, we have built a specialized engine for collecting and handling large                 
amounts of streaming data coming from many sources.  

The basic principle of the engine is that is issues monitoring messages on behalf of each                
agent and then caches and indexes them into a single (but possibly distributed) database. The               
technical basis of the engine is ElasticStack, an integrated streaming data-management and            
analysis solution. 

The monitoring pipeline is fully distributed, can be scaled to multiple machines, and is              
tolerant of failures and restarts of each component. Likewise, the simulation engine can be              
readily scaled to multiple machines depending on the required load for simulation or production              
environments. Both provide real-time monitoring across all machines via web front-ends.           
Real-time network and agent activity monitoring and event capturing are available via custom             
web front-ends accepting data streams from other parts of the infrastructure.  

 

6.3.4 OfferNets Economy 
 
The decentralized computing model and architecture allow us to implement, test, deploy, and             
observe the evolution of a virtually unconstrained number of computational processes interacting            
and coordinating directly or indirectly within the ecosystem. The challenge is to define concrete              
processes, design their interaction, and fine-tune the OfferNets economy toward preferred           
dynamics. 

The OfferNets domain model is specified as a property graph schema, meaning it is              
formalized in terms of types of nodes, their properties, types of edges, their properties, and               
processes defining graph-traversal and mutation constraints. Every agent operating in the           
network is allowed to implement any process. Processes that require interaction with the social              
graph of OfferNets are implemented as graph traversals. Other processes are represented as             
conventional asynchronous algorithms. OfferNets currently implements basic similarity-search        
and cycle-search processes. Cycle execution and advanced search processes are in the pipeline. 
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Conceiving, implementing, and running computational experiments on OfferNets and then          
analyzing the data collected by the monitoring engine is computationally intensive due to the              
large parameter space and many repetitions needed for meaningful exploration. 

Furthermore, it is an open-ended process in the sense that every simulation raises fresh              
questions and informs the setup of the next one. Both the computational infrastructure and the               
domain model change and improve with each iteration. Since the start of simulation modeling              
experiments in August 2018, we have been running simulations to compare centralized and             
decentralized search algorithms on the same graph structures. 

 

6.3.5 Integration into Main SingularityNET Network 
 
OfferNets research initiative is estimated to contribute to the development of SingularityNET’s            
decentralized AI network in a few different ways. The exact avenues and scope of integration               
will be determined after the beta launch from the following possibilities: 

● Developing an automated decentralized marketplace and economy of AI agents on top of             
the SingularityNET network. Since OfferNets provides a generic decentralized         
mechanism of chaining processes by their inputs and outputs, it may be a basis to               
research the mechanism of building automatic workflows among SingularityNET AI          
agents. � 

● Large-scale simulations and testing on top of SingularityNET beta, including simulations           
of reputation systems. OfferNets allows us to run simulations on top of SingularityNET’s             
beta infrastructure by constructing simulated AI service providers with different          
behaviors that would call SingulartyNET infrastructure by its gRPC API. � 

● Providing conceptual and computational insights into the operation and governance of           
decentralized networks for implementation in SingularityNET. OfferNets follows a         
radically decentralized design philosophy, but real-world systems often require a healthy           
balance between centralization and decentralization. Pushing the limits of         
decentralization in a research environment provides insights that may be useful in            
pragmatic settings, yet may have to be separately tested and implemented. � 

● Further conceptual research into and simulation modeling of new decentralized economic           
and social models that maximize the capabilities of AI and advanced autonomous robot             
integration in SingularityNET and possibly beyond.  

 
This avenue can be extended to include partnerships with existing think tanks working on new               
economic and social governance ideas.  
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7. Guiding the Network from Infancy to Childhood and Beyond 
 
The specifics of the SingularityNET platform and the assemblage of AI algorithms and services              
available on the network are intended to evolve and adapt in an agile way based on the needs of                   
the ecosystem and the contributions of the community. The success of the project will entail the                
rapid obsoleting of a significant percentage of the material presented in this whitepaper.  

The spirit of the SingularityNET design, however, is intended to be robust with respect to               
growth and change. The concept of a network of interoperating and value-exchanging AIs,             
controlled in a democratic and decentralized manner, delivering services to customers on their             
own and interlocking into subnetworks whose intelligence exceeds the sum of the intelligences             
of the parts—this is the key and what the project founders and the guiding SingularityNET               
Foundation wish to see continue even as the particulars of protocols, algorithms, structures, and              
standards mature. 

A consequence of this dynamic aspect of a project like SingularityNET is the centrality of the                
community to the project. It is the ecosystem of developers, users, testers, evangelists, and other               
community members that will drive the ongoing growth and change of the platform and the AI it                 
supports.  

With the beta release, SingularityNET is beyond its infancy but still in its very early               
childhood. In this germinal phase, the growth of the network will be powered and guided by the                 
exchange of information, passion, and value among both the humans and the AIs involved in the                
network. 
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