

SingularityNET
A Decentralized, Open Market and Network for AIs

Whitepaper 2.0: February 2019

Abstract

Artificial intelligence is growing more valuable and powerful every year and will
soon dominate the internet. Visionaries like Vernor Vinge and Ray Kurzweil have
predicted that a “technological singularity” will occur during this century. The
SingularityNET platform brings blockchain and AI together to create a new AI
fabric that delivers superior practical AI functionality today while moving toward
the fulfillment of Singularitarian artificial general intelligence visions.

Today’s AI tools are fragmented by a closed development environment. Most
are developed by one company and perform one extremely narrow task, and there
is no straightforward, standard way to plug two tools together. SingularityNET
aims to become the leading protocol for networking AI and machine learning
tools to form highly effective applications across vertical markets and ultimately
generate coordinated artificial general intelligence.

Most AI research today is controlled by a handful of corporations—those with
the resources to fund development. Independent developers of AI tools have no
readily available way to monetize their creations. Usually, their most lucrative
option is to sell their tool to one of the big tech companies, leading to control of
the technology becoming even more concentrated. SingularityNET’s open-source
protocol and collection of smart contracts are designed to address these problems.
Developers can launch their AI tools on the network, where they can interoperate
with other AIs and with paying users.

Not only does the SingularityNET platform give developers a commercial
launchpad (much like app stores give mobile app developers an easy path to
market), it also allows the AIs to interoperate, creating a more synergistic, broadly
capable intelligence. For example, if a text-to-speech AI and an Italian-to-English
translation AI were both on the network, then the network as a whole would be
capable of using Italian text to produce English speech.

Within this framework, AI transforms from a corporate asset to a global
commons; anyone can access AI tech or become a stakeholder in its development.
Also, anyone can add an AI/machine learning service to SingularityNET for use
by the network and receive network payment tokens in exchange.

SingularityNET is backed by the SingularityNET Foundation (described in
section 1.5), which believes that the benefits of AI should not accrue only to a
small set of powerful institutions, but rather should be shared by all. A key goal
of SingularityNET is ensuring that the technology is benevolent by human
standards and that the network is designed to incentivize and reward beneficial
players. This is critical given the explicit aspiration of the project—alongside
shorter-term practical and commercial goals—to play a central role in launching

1

the technological singularity as foreseen by Vinge, Kurzweil, and others by
catalyzing the emergence and economic pervasiveness of self-modifying,
self-improving, self-understanding artificial general intelligence.

The SingularityNET platform, AI network, and ecosystem are works in
progress, and are intended to remain so, the very essence of the singularity being
rapid change. In this spirit, what you are reading is a substantial revision of
SingularityNET’s first whitepaper. The first version was written in fall 2017
before the network’s initial token generation event, whereas this version was
written in February 2019 and reflects what has been learned and built during the
interim.

2

Contents

1. Vision ……………………………………………………………………………………….... 6
1.1 Inspiration ………………………………………………………………………………. 6
1.2 Acute Market Needs Addressed ………………………………………………………... 7
1.3 A Robust and Adaptive Software Architecture ……………………………………….... 9
1.4 A Decentralized, Self-Organizing Cooperative ………………………………………... 10
1.5 The SingularityNET Foundation ………………………………………………………. 12

2. The SingularityNET Platform ……………………………………………………………. 13
2.1 Overview of the SingularityNET Beta Platform ………………………………………. 13
2.2 The SingularityNET Daemon and Wrapping Services ………………………………... 15
2.3 The SingularityNET Registry …………………………………………………………. 17
2.4 Scalable Payments with the Multi-Party Escrow and Channels ………………………. 18
2.5 The Marketplace DApp ……………………………………………………………….. 20

2.5.1 Service Listing …………………………………………………………………... 20
2.5.2 Service Execution ……………………………………………………………….. 21

2.6 Developer Support Tools: CLI and SDK …………………………………………….... 22
2.6.1 For Service Providers: The Command Line Interface …………………………... 22

2.6.1.1 How the CLI Works ……………………………………………………….. 23
2.6.1.2 Service Registration and Deployment Workflow …………………………. 24

2.6.2 For Service Consumers: Software Development Kit ……………………………. 24
2.7 Future Improvements ………………………………………………………………….. 25

2.7.1 Complex Service Interactions: Service Ontology and the API of APIs ………… 26
2.8 Reputation System …………………………………………………………………….. 27

2.8.1 Reputation System Concept ……………………………………………………... 29
2.8.2 Reputation System Options …………………………………………………….... 29
2.8.3 Reputation “Liquid Rank” Algorithm ………………………………………….... 30
2.8.4 Reputation Police ………………………………………………………………... 30

2.9 AI Infrastructure as a Service ………………………………………………………….. 31
2.10 Deployment in Robots and Embedded Devices …………………………………….... 32
2.11 Blockchain Agnosticism …………………………………………………………….... 32

2.11.1 Reputation-Based Consensus …………………………………………………... 33
2.12 Incremental Improvements to Current Components ……………………………….... 33

3. Democratic Governance …………………………………………………………………... 34
3.1 Reputation and Stake-based Voting ………………………………………………….... 34
3.2 Transitioning to Full Democracy ……………………………………………………… 36
3.3 Decisions regarding Benefit Tasks …………………………………………………….. 36

3

4. High-Level AI Services …………………………………………………………………… 37
4.1 Summary ……………………………………………………………………………… 38

4.1.1 The Need for AI Solutions ……………………………………………………… 38
4.1.2 What Do We Mean by AI Services? ……………………………………………. 39
4.1.3 Higher-level AI Services Help Drive Growth …………………………………... 40

4.2 AI Services Provided by the SingularityNET Foundation ……………………………. 41
4.2.1 Network Analysis ……………………………………………………………….. 41

4.2.1.1 Motivation ………………………………………………………………… 41
4.2.1.2 Examples of Applications ………………………………………………… 42
4.2.1.3 SingularityNET Simulation ………………………………………………. 43

4.2.1.3.1 Social Media ………………………………………………………… 44
4.2.2 Social Robotics ………………………………………………………………….. 45

4.2.2.1 Motivation …………………………………………………………………. 45
4.2.2.2 Examples of Applications …………………………………………………. 46
4.2.2.3 Plan ………………………………………………………………………... 46
4.2.2.4 Services ……………………………………………………………………. 46
4.2.2.5 Mind-Modeling and Loving AI Development ……………………………. 48
4.2.2.6 Social Cognition with Deep Recurrent Neural Networks …………………. 48

4.2.3 Bio-data Analytics ………………………………………………………………. 49
4.2.3.1 Motivation …………………………………………………………………. 49
4.2.3.2 Examples of Applications …………………………………………………. 49
4.2.3.3 Services ……………………………………………………………………. 52

4.2.4 Probabilistic Graphical Models and Serious Games …………………………….. 54

5. SingularityNET AI R&D Overview ……………………………………………………… 54
5.1 Introduction ……………………………………………………………………………. 55
5.2 AI Architectures and Algorithms ……………………………………………………... 56

5.2.1 Symbolic Learning and Reasoning …………………………………………….... 56
5.2.1.1 Scalable, General Probabilistic Logic……………………………………... 57
5.2.1.2 Integration of Probabilistic Evolutionary Program Learning and Inference . 58
5.2.1.3 Pattern Mining in Logical Hypergraphs …………………………………... 59
5.2.1.4 Guiding Inference with Nonlinear Attention Allocation ………………….. 59

5.2.2 Integrative Genomics as a Case Study for Integrative AI ……………………….. 60
5.2.3 Neural-Symbolic Integration for Semantic Computer Vision …………………... 61

5.2.3.1 Visual Reasoning ………………………………………………………….. 62
5.2.3.2 Concept and Representation Learning …………………………………….. 63
5.2.3.3 Generalization and Invariance in Deep Neural Networks ……………….... 64

4

5.2.3.4 Frameworks for Neuro-symbolic Integration ……………………………... 64
5.2.4 Unsupervised Language Learning ………………………………………………. 65

5.2.4.1 Approach to Unsupervised Grammar Learning …………………………... 66
5.2.4.2 Stochastic Language Generation ………………………………………….. 67

5.2.5 Semi-supervised Learning of Mappings from Language to Logic …………….... 67
5.2.5.1 Rule Learning ……………………………………………………………... 68
5.2.5.2 Help Generate Natural Languages ………………………………………... 69
5.2.5.3 Scaling to Complex Linguistic Structures ……………………………….... 69

5.2.6 Goal-Driven Dialogue Systems …………………………………………………. 70
5.2.6.1 Intent Classification ……………………………………………………….. 71
5.2.6.2 Dialogue Representation and State Tracking ……………………………... 71
5.2.6.3 Authoring/Development Interface ……………………………………….... 71

5.2.7 Distributed Processing for Semantic Hypergraphs …………………………….... 72
5.2.7.1 Distributed AtomSpace x Distributed Database …………………………... 72
5.2.7.2 Extending a Distributed DBMS ………………………………………….... 73

6. Measuring, Modeling, and Extending SingularityNET …………………………………. 74
6.1 Symbolic Interaction–based Complex Network Simulation Modeling ……………….. 75

6.1.1 Agent Selection in Simulated Networks ……………………………………….... 76
6.1.1.1 AI Agent Signs in SISTER Systems ………………………………………. 77

6.1.2 Social Algorithms to Solve Social Problems ……………………………………. 78
6.2 Tononi Phi for Measuring Integrated Information in Complex Cognitive Networks …. 79

6.2.1 Tuning Parameters ………………………………………………………………. 80
6.2.1.1 Quantifying Cognitive Measures in AI Systems …………………………... 80

6.2.2 Impacts on Specific SingularityNET Services ………………………………….. 81
6.3 Offer Networks for Optimizing Complex Exchange Patterns in Agent Systems …….. 82

6.3.1 Decentralized Computing ………………………………………………………. 82
6.3.2 Simulation Engine ………………………………………………………………. 83
6.3.3 Monitoring and Analysis Engine ………………………………………………... 83
6.3.4 OfferNets Economy ……………………………………………………………... 83
6.3.5 Integration into Main SingularityNET Network ………………………………… 84

7. Guiding the Network from Infancy to Childhood and Beyond ……………………….... 85

5

1. Vision

1.1 Inspiration

The inevitability of a technological singularity is increasingly accepted throughout the

technology and business worlds. Knowledgeable people are realizing that the next few decades
will see a transition to a new society and economy in which machine intelligence is the dominant
factor. For this to occur, swarms of machine and organic intelligences must network together to
produce emergent “global brain” dynamics of unprecedented complexity and sophistication with
power and flexibility none alone would have. 1

Markets display elements of cognitive synergy—agents in an economy each pursue their own
relatively simple goals, but patterns with higher-order goals emerge from their interactions.
SingularityNET is not only a collection of AIs, it is a market. It is designed to harness
self-organizing swarm intelligence to create a whole greater than the sum of its parts. Blockchain
allows us to program economic rules in a digital environment and AI software to seamlessly
interact with them.

The path to creating a positive “global brain” is challenging. A technological singularity
could have unprecedented benefits but also poses unprecedented risk. The popular press is full of
dire warnings about the dangers of artificial general intelligence.

Among the challenges is the current set of protocols for collective action; in many respects,
today’s financial mechanisms and institutions would give us a risky ride to the singularity. New,
more flexible, open, and rapidly adaptive economic structures and dynamics are needed. 2

Blockchain, with its natively digital money, is a powerful tool for managing transactions in
an economy dominated by machine intelligence. However, blockchain is just a tool; there are 3

important decisions to be made about how to use it. SingularityNET is a blockchain-based
framework designed to serve the needs of AI agents as they interact with each other and with
external customers. At its core, SingularityNET is a set of smart contract templates that AI
agents can use to request that AI work be done, to exchange data, and to supply the results of AI
work.

This framework is a network that meshes disparate elements into a collective intelligence,
much like the different areas of the brain—each with its own speciality—mesh together. It is
critical that this network be designed with positive principles in mind:

● Democratic governance on specific issues—if the community governs the system, then
the system will tend to act for the benefit of the community

1 Damien Broderick, The Spike (Tor Books, 1997); Ray Kurzweil, The Singularity Is Near (2006); Vernor Vinge,
“The Coming Technological Singularity,” Whole Earth Review 81 (1993): 88–95; Ben Goertzel, “Human-level
Artificial General Intelligence and the Possibility of a Technological Singularity: A Reaction to Ray Kurzweil’s
‘The Singularity Is Near,’ and McDermott’s Critique of Kurzweil,” Artificial Intelligence 171, no. 18 (2007):
1161–73.
2 Ben Goertzel, Ted Goertzel, and Zarathustra Goertzel, “The Global Brain and the Emerging Economy of
Abundance: Mutualism, Open Collaboration, Exchange Networks and the Automated Commons,” Technological
Forecasting and Social Change 114C (2016): 65–73. 2016, http://goertzel.org/OpenCollaboration.pdf.
3 John Clippinger and David Bollier, From Bitcoin to Burning Man and Beyond (Off the Common Books, 2014).

6

● Encouragement that prompts innovative new agents to enter the network, and creation of
the conditions necessary for agents to act in a manner that feeds the collective
intelligence

● Direction of a significant percentage of the network’s efforts toward causes of broad
benefit

SingularityNET has been designed to meet these requirements by

● delivering intelligence services to corporations, other organizations, and individuals;

● fostering the emergence of increasingly powerful distributed general intelligence; and

● deploying artificial intelligence for ever-increasing benefit to as many humans and other
sentient beings as possible.

SingularityNET is designed both to be highly valuable now and to lay the groundwork for the

emergence of a self-modifying, decentralized “artificial cognitive organism” with the eventual
potential for general intelligence and beneficial ethical characteristics beyond the human level. It
is a practical design inspired by long theoretical thinking and prototyping by our founders
regarding artificial general intelligence, open-ended intelligence, the global brain, and more. 4 5 6

1.2 Acute Market Needs Addressed

SingularityNET meets an acute and accelerating market need. In the current economic and

technological context, every business needs AI, but off-the-shelf AIs will rarely match a
business’s needs. Only tech giants can hire armies of developers to build custom AIs, and even
they have a hard time hiring enough AI experts to meet demand. SingularityNET provides an
automated process that enables any business to connect existing AI tools to build the solution it
needs. It optimizes for accessibility and customizability and by its nature reduces the
reduplication of effort involved in proprietary development, making development more efficient.

Many state-of-the-art AI tools exist only in GitHub repositories created by graduate students
or independent researchers. The latest algorithms for image and video analysis, machine
translation, automated theorem proving, bioinformatics data analysis, etc. are typically available
on Github, but the friction inherent in installing, configuring, and running them limits their use.
Many remain little more than demos. Most AI developers are academics, not businesspeople, and
have no easily accessible marketplace to turn to in order to monetize their clever AI code. As a
result, the AI in real-world products tends to lag months to years behind the code.

4 Ben Goertzel, The AGI Revolution (Humanity+ Press, 2016).
5 David Weaver Weinbaum and Viktoras Veitas, “Open-ended Intelligence,” in International Conference on
Artificial General Intelligence (Springer, 2016): 43–52, https://arxiv.org/abs/1505.06366.
6 F. Heylighen, “The Global Superorganism: “An Evolutionary Cybernetic Model of the Emerging Network
Society,” Social Evolution and History 6, no. 1 (2007).

7

SingularityNET is a launchpad where developers can quickly get their AI models and algorithms
into real-world applications.

Machine learning tools also require datasets of sufficient size. Creating and managing such
large datasets are beyond the means and capabilities of most AI developers, and the closed
development model that currently prevails makes it hard for developers to share datasets.

Figure 1. Major roadblocks remain

SingularityNET connects these AI tools and datasets to the marketplace, making them accessible
to end users and developers and giving developers a way to monetize their creations. It is a
sharing-economy marketplace for AI, allowing these tools to share data and abilities in order to
democratize access to the benefits of AI.

In accordance with these goals, SingularityNET will be an open network. Anyone can insert
an AI Agent as long as it shares information according to the SingularityNET API and
accepts/disburses payment according to SingularityNET’s economic logic. New AI Agents will
come from AI developers who want access to SingularityNET’s marketplace and who want to
boost their AI agent’s intelligence by linking it to other AIs in a cooperative network.

Like Uber and Airbnb, we have identified a large unexploited resource and a large market in
need of that resource, and we are launching a tool to connect the two. The unexploited resource
is AI algorithms and software on GitHub and elsewhere, and the market is the 99 percent of
businesses that cannot afford a team of AI experts.

8

But in SingularityNET we also have a key added factor not present in these analogous cases:
the apartments in AirBnB’s network do not combine to become meta-apartments, nor does
Uber’s network create meta-cars, but AIs in SingularityNET’s network come together to form
meta-AIs whose intelligence is more than the sums of their parts. An unprecedented combination
of powerful network effects is here, waiting to kick in once the network of AIs and associated
human communities reach sufficient size and maturity.

1.3 A Robust and Adaptive Software Architecture

In computer science terms, SingularityNET is a distributed computing architecture for making
new kinds of smart contracts to facilitate market interactions with AI and machine learning tools.
The following design principles are incorporated throughout the design:

● Interoperability. The network will be able to interface with multiple blockchains.

● Data sovereignty and privacy. The network includes user-side controls for sharing
personal data. Users remain in control of their data and can share it with the network via
smart contracts.

● Modularity. Flexible network capabilities make it possible to create custom topologies,
AI Agent collaborations of arbitrary complexity, and failure recovery methods.

● Scalability. SingularityNET will securely host both private and public contracts, allowing
more scalable and resilient applications to be built with near-zero transaction costs.

Figure 2. Cognitive synergy between AI Agents

9

SingularityNET Agents can run in the cloud and on phones, robots, and embedded devices.

1.4 A Decentralized, Self-Organizing Cooperative

One can think about SingularityNET as a “decentralized self-organizing cooperative.” This
concept is similar to to the better-known “decentralized autonomous organization” (“DAO”) but
different in that a foundation will provide high-level oversight of SingularityNET. Our intent is
that over time, the network will evolve into a truly decentralized and autonomous organization.
This sort of organization will differ from an ordinary corporation by, above all, its openness.

SingularityNET’s collection of smart contracts includes contracts to be used by external,
non-AI Agents who wish to obtain AI services from Agents in the network. Anyone can create a
node (an AI Agent), put it online (running on a server, home computer, robot, or embedded
device), and enter it into the network so that it can request and/or fulfill AI tasks in interaction
with other nodes and engage in economic transactions.

Figure 3. Example of a “circle of exchange” among AI Agents

Services on SingularityNET can be accessed using the AGI token. Token holders can use their
tokens to purchase services in the marketplace. In the future, tokens may also bestow voting
rights in the network’s democratic governance system.

During the initial phases of the network’s operation, the core parameters of the network will
be governed by a nonprofit foundation which will be monitored and advised by a supervisory
board. The foundation will operate the network and exercise oversight to prevent abuse and

10

hostile behavior while respecting the designed-into-the-system privacy of inter-agent
interactions.

However, even in the earliest stages, activity on SingularityNET will be self-organized. For
example, Agents will be free to create new AI Agents, insert them into the network, and transact
freely and permissionlessly with each other.

Figure 4. SingularityNET aims to foster intelligent systems and maximize their positive impact

11

SingularityNET aims to foster increasingly intelligent systems while maximizing the positive
impact of these systems. The economic logic is designed to generate an intelligent global
economy that pursues maximum benefits for all people and all life. Through a combination of
powerful AI Agents, human decision-making, and benefit-maximizing game rules,
SingularityNET will accelerate the development of a global supermind, helping humanity evolve
into a more advanced, intelligent, beneficial, and connected mode of being.

In short, SingularityNET is an innovative economic mechanism designed to catalyze human
and machine intelligence to move toward a new form of ethically beneficial self-organizing
intelligence. Its global network of artificially intelligent agents will provide valuable AI services
to anyone while, in the process, it self-organizes toward loftier goals. It is plausible that a highly
successful SingularityNET will play a major role in the transition of humanity to a positive
technological singularity.

The growth of SingularityNET will foster advances not only in practical narrow AI, but also
in the general theory and practice of beneficial artificial general intelligence, in the design and
analysis of structures for ethically intelligent economies, and in the continuous refining of means
to conceptualize and estimate “benefit” and “greater good.”

1.5 The SingularityNET Foundation

The non-profit SingularityNET Foundation, incorporated in the Netherlands, is responsible for
building, supervising, and accelerating the growth of the SingularityNET network and
marketplace.

During the initial phases of network operation, most major governance decisions will be
made democratically by token holders, with the Foundation providing some high-level
stewardship and practical day-to-day management. As the network evolves, there is potential for
transition to a fully self-regulating Decentralized Autonomous Organization, and the network’s
technical specifications and governance methodology are designed to support this.

The SingularityNET Foundation was formed in late 2017 and early 2018 by the following
key groups:

● The OpenCog Foundation, stewards of OpenCog, the leading open-source artificial
general intelligence platform

● Hanson Robotics, creators of the world’s most lifelike humanoid robots

● Vulpem, a blockchain software engineering consultancy responsible for back-end work
on a number of successfully designed private and public blockchains, cryptocurrencies,
and decentralized applications

● Artificial intelligence software consultancy Novamente LLC, which has provided custom
AI solutions for corporations and government agencies since 2001

12

Creating a successful combination of sophisticated initial AI Agents, a flourishing community of
AI Agent developers, and a rich ecosystem of customers at varying levels of sophistication is a
huge undertaking. Fortunately, the founding team brought to the project significant experience as
well as a large body of open-source code to help lay the foundation for the SingularityNET
global brain network. But the vision requires the active participation of a grassroots community
seeded by the founding team, both to put software on the network and to democratize
governance.

2. The SingularityNET Platform

Realization of the SingularityNET vision requires a well-designed, efficient, and flexible
underlying software platform that provides the protocols and tools necessary for AI agents to
integrate into the network. Creating a platform that fully embodies the SingularityNET concept
will be a medium-term effort, but significant progress has been made since development started
in August 2017.

This section describes in moderate depth the software architecture for the beta version of the
platform released in February 2019 and then makes some higher-level observations about
features and improvements to be added post-beta.

2.1 Overview of the SingularityNET Beta Platform

The SingularityNET platform contains a number of critical components that work together to
enable a decentralized network of AI services to flourish. The core components include many
architectural components that allow for a functional, scalable, and extensible system. We arrived
at this architecture through a careful process guided by a few key decisions governing blockchain
interactions, AI service integration, and abstraction and by the goal of building an AI
marketplace that is both open and compliant with regulatory and legal requirements.

First, we made the conscious choice to minimize our dependence on our current blockchain,
Ethereum. Both conceptual and practical issues motivated this decision. Conceptually, we desire
to be blockchain-agnostic and will consider building our own consensus algorithm based on
reputation. The speed, reliability, and costs of Ethereum blockchain interactions dictate that any
scalable system built on top of it must minimize gas costs and the delays introduced by
block-mining time. These decisions are reflected in our use of tools to abstract away all
blockchain interactions (the daemon, CLI, and SDK) and in our use of a multi-party escrow
contract and atomic unidirectional channels for payments.

Second, on AI services integration, we wanted to abstract away as much of the network as
possible, from an AI developer's perspective, in order to reduce the learning curve and minimize
the overhead associated with providing AI services via the network. Moreover, we wanted to
achieve this abstraction with a single flexible tool that also helps us provide scalability,
robustness, and distribution and management features. This is achieved by the daemon, which is
a sidecar proxy used to communicate with services and the network and which will soon also
allow services to very easily find and call other services.

13

Finally, to make our marketplace compliant with regulations without compromising on
openness, we implemented a fully decentralized registry of AI services available on the platform.
The AI marketplace supplements that registry (a smart contract) with a centralized source for
which services are curated; that is, they have gone through a due-diligence process covering the
service owners and the nature of the service being offered.

The diagram below depicts the key components along with auxiliary components and their
roles.

Figure 5. The key components of our platform

For a developer who wants to offer an AI service over the network, the most crucial component
is the SingularityNET daemon, an adapter and proxy that abstracts away interactions will all
other components. The daemon handles interactions with smart contracts and payments, takes
care of client request validation, and does other useful tasks, allowing AI developers to focus
almost exclusively on the AI-related aspects of their server-side software and services. The
daemon is a sidecar proxy, so one daemon instance is deployed next to each AI service instance.

For end users who want to purchase access to the AI services available in the platform, the
most important component is the Marketplace DApp, through which they can search and
browse a collection of curated services (i.e., services approved by the SingularityNET
Foundation as relevant and high quality and whose owners have signed user and data-privacy
agreements) for a large and ever-growing variety of AI tasks. The Marketplace DApp also
handles payment for services (through MetaMask integration) and service ratings.

For application developers who want to use the network’s intelligence in their applications,
the key component is the SingularityNET SDK, which automatically compiles client-side code

14

for interacting with the platform and with specific services, allowing service requests to be coded
in a straightforward way and supporting payment and interactions with the blockchain.

The Ethereum blockchain is used to host two critical smart contracts: the Registry and the
Multi-Party Escrow.

The Registry is where AI service providers register on the platform, which involves
providing text descriptions and tags to allow users to discover their service, pricing information,
and information such as gRPC models and endpoint locations to allow users to call their services.

The Multi-Party Escrow contract handles payments through escrow accounts for each user
(end users and applications) coupled with atomic unidirectional channels for faster and cheaper
transactions.

Those are the core components of the platform. Two key support components are also worth
mentioning:

● The AI developer– and owner-oriented CLI (command-line package) provides command
line APIs for a number of crucial service developer and service owner tasks: registering
and managing identities, publishing services, updating registration information, notifying
the platform of new endpoints, managing payment channels and balances, and calling
services.

● The Request for AI Portal (RFAI) is a DApp through which end users and application
developers can request specific AI services they would like added to the network and
stake AGI tokens as a reward for high-quality solutions.

2.2 The SingularityNET Daemon and Wrapping Services

The daemon is the adapter that a service can use to interface with the SingularityNET platform.
In software architecture lingo, the daemon is a sidecar proxy, —a process deployed next to a 7

core application (the AI service, in this case) to abstract away some architectural concerns such
as logging and configuration as well as entire platform aspects, such as the interaction with smart
contracts or even the decision to use the Ethereum blockchain.

The two key abstraction responsibilities of the daemon are payments and request translation.
In order to authorize payments, the daemon interacts with the Multi-Party Escrow contract.
Before invoking a service through SingularityNET, a consumer must have

1. funded the Multi-Party Escrow contract (see section on payments below) and

2. opened a payment channel with the recipient as specified by the service definition.

With each invocation the daemon checks that

1. the signature is authentic,

2. the payment channel has sufficient funds, and

7 https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar.

15

3. the payment channel expiry is beyond a specified threshold (to ensure that the developer
can claim the accrued funds).

After these successful checks, the request is proxied to the service. The daemon also keeps track
of payment states of different clients.

Figure 6. The SingularityNET daemon

Once the daemon has validated requests, it translates them into the format expected by the AI
service. The daemon exposes a gRPC, so all requests are based on gRPC and protocol buffers, 8 9

but it can translate requests to a few different formats, as expected by the service: in addition to
gRPC/Protobuf, JSON-RPC and process fork–based services (executables to be executed on a
per-call basis with the input parameters on standard input) are supported. This translation enables
one consistent protocol to be used to communicate with any service on SingularityNET. The
daemon and CLI also use gRPC and Protobuf for communication.

One can deploy multiple instances of an AI service. Each instance will have its own sidecar
daemon, and all daemons will be registered as endpoints in the Registry. When multiple
instances exist, they can be put into one or more instance groups (a typical reason for doing so
would be to group instances in the same data center or cloud region). Daemons in the same group
coordinate to share payment status information through etcd. 10

The daemon provides some additional deployment- and administration-oriented features:

8 https://grpc.io/.
9 https://developers.google.com/protocol-buffers/.
10 https://coreos.com/etcd/.

16

https://coreos.com/etcd/

● SSL termination. This can be done either with a certificate and keyfile supplied by the
service developer or with automatic certificates provided by Let’s Encrypt. 11

● Logging to files, with log rotation and pluggable log hooks. Currently an email hook is
provided, and an easy-to-use API is available for other hooks.

● Metrics, monitoring, and alerts. The daemon collects metrics about request calls, which
service owners can use to optimize their resource usage. It also monitors daemon and
service events, providing configurable alerts via email or web services.

● Rate limiting to prevent DoS attacks and to allow service owners to scale at their own
speed and ability. The daemon uses the token bucket algorithm. 12

● Heartbeat. A pull-based heartbeat service is provided, following the gRPC health
checking protocol. The daemon will check that the heartbeat of the service is 13

configured; this is used by monitoring services as well as the Marketplace DApp.

2.3 The SingularityNET Registry

The SingularityNET Registry is an ERC-165–compliant smart contract on the Ethereum 14

blockchain that stores organizations, services, and type repositories. AI developers use the
Registry to announce details of their services, and consumers use the Registry to find the services
they need. When a user searches for a service in the Marketplace DApp, the DApp reads details
of the services from the Registry. The Registry also allows tagging of services and type
repositories to enable searching and filtering.

The Registry stores four main pieces of data: organizations, services, type repositories, and
tags. It supports creation, removal, editing, and reading for all of these, and contains several view
functions for retrieving data.

An organization is an umbrella for services to be grouped under and is at the top of the
Registry’s data hierarchy. Service developers can (and should) register an organization and then
put all of their services underneath it. An organization registration record has a name, an owner
address (in the identity sense), a collection of member addresses, a collection of services, and a
collection of type repositories.

Services and type repositories registered under a given organization are said to be owned by
that organization. The list of members is a primitive access-management structure; members of
an organization can do everything except change the organization owner and delete the
organization.

A service represents a single AI service. Its Registry entry contains all the necessary
information for a consumer to call that AI service. The entry contains a name, tags, and IPFS
hash. The name is an identifier for discoverability, the tags help a customer find a service

11 https://letsencrypt.org/.
12 https://en.wikipedia.org/wiki/Token_bucket.
13 https://github.com/grpc/grpc/blob/master/doc/health-checking.md.
14 https://eips.ethereum.org/EIPS/eip-165.

17

https://letsencrypt.org/

without knowing its name, and the IPFS hash is the link to the metadata file on IPFS. DApps and
smart contracts can use the listServicesForTag view function to discover services.

All service metadata is stored off-chain in IPFS for performance and gas-cost reasons. This
metadata includes

● basic information such as version number, service name, description, etc.;

● code-level information for calling the service, such as encoding (protobuf or JSON) and
request format (gRPC, JSON-RPC or process);

● A list of daemon endpoints, aggregated into one or more groups;

● pricing information; and

● an IPFS hash for the service API model.

The CLI provides a convenient API and library for manipulating this metadata.

A type repository is a Registry entry where a service developer lists service metadata, such as
the service model and the data types used. The entry contains a name, some tags, a path, and a
URI. The name and tags are for discoverability, the path is an optional identifier for the
organization’s internal management, and the URI allows the client (whether an end user or an
application making calls through the SingularityNET SDK) to find the metadata. DApps and
smart contracts can use the listTypeRepositoriesForTag view function to discover AI services.
The URI is an IPFS hash, and the hosting itself can be done by either SingularityNET, the
service developer, or any IPFS pinning service, such as Infura.

Tags are completely optional but recommended for discoverability. Registry functions allow
tags to be added to services and to type repositories. After that, the tags are displayed and
searchable on the DApp. Thanks to a reverse index built into the Registry contract, other smart
contracts can also search the Registry directly. This is the foundation for the “API of APIs”
functionality discussed below.

The Registry provides all the information needed to find and interact with AI services on the
platform, either by listing the information in full or, when it is too long, by listing the IPFS hash.
The Marketplace DApp is a convenient interface for end users, and anyone can use the
information in the Registry to build similar marketplaces.

2.4 Scalable Payments with the Multi-Party Escrow and Channels

The Multi-Party Escrow smart contract (“MPE”), coupled with our atomic unidirectional
payment channels, enables scalable payments in the platform by minimizing the number of
on-blockchain transactions needed between clients and AI service owners. The MPE contract has
two main functionalities:

● It is a simple wallet with deposit and withdraw functions.

● It is also the set of atomic unidirectional payment channels between clients and services
providers.

18

A payment channel is a tool that enables off-chain transactions between parties without the 15

delay imposed by blockchain block formation times and without compromising the transactional
security. There are several kinds of payment channels. Let us consider the simple unidirectional
payment channel:

● The sender, Alice, creates an escrow contract with a given expiration date. She funds the
escrow contract with the desired amount of tokens (say, 23).

● Suppose Alice wants to send 5 AGI tokens to Bob (“recipient”). Alice sends Bob a signed
authorization to close the escrow channel and withdraw 5 AGI tokens from it.

● Bob checks that the authorization is correctly signed, the amount is correct, and the
amount does not exceed the escrowed funds.

● Bob can close the channel at any moment by presenting a signed authorization from
Alice. In this case, Bob will be sent the 5 tokens Alice authorized, and the remaining 18
tokens in escrow will go back to Alice.

● Alice can close the channel after the expiration date and take all funds back.

● Alice can extend the expiration date and add funds to the contract at any time.

In the model above, there is no way for Bob to withdraw funds without closing the channel.
Otherwise, he could use Alice’s signed authorization a second time and withdraw 5 more AGI
tokens.

Therefore, we added a feature that allows Bob to withdraw funds from the channel without
closing it, while preventing this replay attack. We used a simple, textbook solution: a nonce. We
add a nonce to the message that the sender signs, and this nonce changes each time the recipient
claims the channel.

With this improvement, payment channels inside MPE have the following favorable
properties:

● The channel between sender and recipient can persist indefinitely. The sender can extend
the expiration time and add funds to the channel. The recipient can claim the amount
signed over to him at any time.

● The system is comfortably functional even when the Ethereum network is overloaded
with confirmation time of several hours or even more, for the following reasons:

○ Neither the sender nor recipient needs any confirmation from the blockchain.
Alice can continue to add funds, and Bob can continue to claim them in the
channel, with no confirmation from the blockchain. For example, after Bob claims
his funds, he can inform Alice that the nonce of the channel has changed, and she
can start to send messages with the new nonce. It is easy to demonstrate that this
is safe for both the sender and the recipient. There is only one condition: the

15 http://super3.org/introduction-to-micropayment-channels/.

19

recipient should make sure that the transaction is mined before the expiry time of
the channel.

○ There is no race condition between claiming (from the recipient side) and
extending/adding funds (from the sender side). The parties can use these functions
at any time, and the final result will not depend on the order in which these
transactions are mined.

When a user wants to call a given service, they must open a channel, add funds to it, and set an
expiry date that allows sufficient time for the service to fulfill its function. Each channel is
unique to a combination of client identity (sender), service identity (recipient), and daemon
group identity. This allows daemons in the same group to share payment information via etdc,
reducing the overall number of channels and simplifying life on the client side. Clients can be
end users interacting with the platform via the Marketplace DApp or applications making calls
directly or through the SDK's generated code.

2.5 The Marketplace DApp

The SingularityNET Marketplace DApp is an entry point to discovering and using AI services on
SingularityNET. The DApp

● reads data from the on-chain Registry and pairs it with off-chain metadata, allowing AI
services to be searched, filtered, and discovered;

● integrates the SingularityNET curation service, displaying from the Registry only those
services that have been vetted and whose owners have undergone due diligence and
signed legal agreements that protect user privacy and data;

● allows AI services to display custom UI components for user interactions (gathering
inputs for service execution and displaying results);

● integrates with Multi-Party Escrow, enabling the user to pay for service usage;

● allows consumers to rate services they have used; this is a simple rating component that
will eventually be replaced by SingularityNET's Reputation System (currently under
development); and

● captures usage metrics at a consumer level.

2.5.1 Service Listing

The following diagram illustrates the various components that the DApp will integrate within
different flows:

20

Figure 7. The various components that the DApp will integrate within different flows

● The DApp will fetch data on curated services, service tags, and votes from the
marketplace service, which contains both information on which services are curated and a
cache of some information kept in the smart contracts and indexed here for performance.

● It merges the above data with the agent details that it reads from the Registry and IPFS to
list them.

● It will also provide users with a mechanism to upvote or downvote an agent.

The DApp includes a wallet interface, allowing users to

● deposit and withdraw funds from the escrow contract,

● deposit funds to a channel (which will go to a specific AI service chosen by the user), and

● view all open channels and the funds in each.

2.5.2 Service Execution

Once a service has been chosen, it is executed:

21

Figure 8. Service execution

1. The DApp displays the service in its interface.

2. The DApp opens a payment channel with the Multi-Party Escrow contract and ensures
that there are sufficient funds to pay for the service.

3. It then invokes the service through the daemon.

4. The DApp displays the response returned by the service.

The DApp in its current version will use MetaMask to integrate with the Ethereum blockchain,
which means that all transactions will be done via MetaMask.

Querying the Registry smart contract would be costly, so the DApp currently relies on a
centralized, serverless component to index and search the Registry. This is merely a performance
optimization, as the Registry data is still stored on the Ethereum blockchain. A future version of
the DApp will remove this centralized component but will retain SingularityNET's centralized
curation and display only curated services.

2.6 Developer Support Tools: CLI and SDK

2.6.1 For Service Providers: The Command Line Interface

The SingularityNET command line interface (CLI) is the primary tool for interacting with the
platform's smart contracts, managing deployed services, and managing funds. It is aimed at

22

service providers. In the near future, it will be supplemented by a web-based dashboard and
control panel.

The CLI provides commands to interface with the blockchain in the following ways:

● creating and managing identities;

● registering and managing the organizations, members, services, types, and tags on the
SingularityNET Registry;

● claiming funds from customers using MPE and payment channels;

● reading and writing metadata and Protobuf specs about AI services (these are stored on
IPFS, while basic service parameters can be fetched from blockchain contracts); and

● connecting to different networks like local testnets, Kovan, Ropsten, and the Ethereum
mainnet.

The CLI also provides service development and deployment support. It can set up new services
by generating service metadata, Protobuf specs, and code templates provided by the
SingularityNET Foundation. The CLI interacts with daemons for each service.

Security-wise, the CLI follows the same guidelines as provided by Ethereum for storing the
private keys. When user identities are created and registered with a client, the CLI safely stores
the details on the local machine and retrieves them only when it needs to interact with the
blockchain.

2.6.1.1 How the CLI Works

Figure 9. How the CLI works

The CLI requires and connects to four critical components:

23

● User identity management. Involves user registration, managing identities and sessions,
and locking/unlocking accounts for transacting with the blockchain. This component is
local to the machine where the CLI is run.

● Daemon. Sidecar proxy. Communicates to servers hosting AI services.

● Registry contract. Deals with organizations, members, services, types, and tags.

● MPE contract. Sends and receives funds and manages other functions related to payment
channels; e.g., closing a channel or extending its expiry date

2.6.1.2 Service Registration and Deployment Workflow

Suppose an AI developer has trained a new AI that categorizes images and wants to launch it as a
service on SingularityNET. The process would be along these lines:

1. Create an identity and choose the network to connect to.

2. Use the CLI to generate the basic service templates (metadata, Protobuf specs, etc.).

3. Deploy the service with the required group of daemon endpoints configured.

4. Use the identity and network from previous steps to register the organization along with
required members, services, type repositories, and tags.

5. Once the service is curated, it will be shown in the Marketplace DApp. Even before that,
it can be found via the Registry.

6. Channels will be created with every service used by a customer. Each channel contains
the funds used by the consumer. The CLI can be used to claim those tokens from the
consumer's escrowed funds.

2.6.2 For Service Consumers: Software Development Kit

The SingularityNET Software Development Kit (SDK) generates client-side libraries to
seamlessly call SingularityNET services and interact with the SingularityNET platform as a
whole.

While either the DApp or CLI is suitable for launching a small number of services, heavy
and frequent production use of services on SingularityNET will be easier and faster through
specialized client libraries generated via the SDK.

A generated client library should require only a funded wallet. It will be able to open and
fund channels on behalf of the user with the multiparty escrow contract, generate well-formed
requests to services, and correctly parse their responses, just like client libraries for traditional
SaaS platforms.

24

The initial version of the SDK supports Python, currently the most popular language for
machine learning and AI and a common language for glue code. In the near future, we will also
provide versions in other popular languages, such as Go, Javascript, and Java.

The list of supported programming languages can be expanded at any time. Client libraries
leverage the gRPC framework, so support for the programming languages targeted by gRPC
“protoc” compiler is the straightforward initial step. Eventually, other languages could be
supported; this would require plugins for the gRPC protoc compiler, either written by the
SingularityNET Foundation or the open-source community.

As well as making service calls using gRPC, client libraries must be able to interact with
Ethereum, IPFS, and other components of SingularityNET. This can be achieved with separate
code for each language, or by wrapping generic libraries (for example in C or C++). For
languages or operations that still are not supported, documentation will be provided to help
developers integrate SingularityNET with their platforms.

A client library in a compiled language would generate calls for each service in the library
and include additional helper functions to handle interactions with Ethereum, IPFS, the daemon,
the MPE contract, and state channels. For example, a client library would interrogate the daemon
at compile time for the encoding used by a specific service and generate method calls that would
appropriately marshal requests and unmarshal responses. A client library would also store the list
of channel IDs so that it does not have to rely solely on those provided by the Foundation or its
partner in a transaction (which might fail, or act in an adversarial way) for such information. The
developer would then integrate these libraries in their application code.

For interpreted languages like JavaScript or Python, two different options can be supported:
both libraries can be generated at compile time for specific services, or more generic libraries
could be used; they would download a service’s protobuf specification (or load it from local
storage), compile client libraries for that service at runtime (or leverage a cached, pre-compiled
client), and dynamically generate service calls. The latter design is used in the DApp, CLI, and
beta version of the SDK.

At the moment, the main focus of the SDK is generating client libraries and making service
calls. In the future, it will be expanded to incorporate other interactions currently handled by the
CLI. For example, a user should be able to use SDKs written in different programming
languages to list services on the Registry; change a service’s metadata; and gather and aggregate
data, logs, and metrics from different daemons for different services that user controls. This
would allow AI services to generate and register new services automatically, and it would enable
artificial intelligence to deploy agents.

2.7 Future Improvements

The previous section described all the components of the SingularityNET platform as of
February 2019, the Beta release milestone. This section describes the major conceptual
innovations coming to the platform in future releases.

25

2.7.1 Complex Service Interactions: Service Ontology and the API of APIs

In a basic transaction on SingularityNET, a user gives tokens to a single service provider, who
performs the requested AI task. However, many tasks will require a more complex combination
of actions by multiple AI service providers. For example, control of humanoid robots requires
multiple AI services—natural language processing, motor control, speech synthesis, etc.—to
collaborate according to a particular architecture.

For a simpler example, let’s say Alice requests that SingularityNET summarize a
French-language website with embedded video. Her request is sent to a document summarizer
service, but perhaps the top service specializes in English text summarization. Without recourse
to other services, Alice's request cannot be fulfilled. However, by relying on the network of AI
services, we can create an arrangement in which

1. the text on the website is sent to a document translation service, which returns an English
version;

2. the embedded video is sent to a video summarization service, which returns a textual
summary of key facts and events in the video; and

3. the original document summarizer service puts together these results and provides a
useful summary of the website, even though it cannot understand French text or process
video.

Because of these interactions between services, the document summarizer provides higher value
for its customers and can earn more. Moreover, demand for the other two services grows. The
result is a more vibrant marketplace. Interactions can grow more and more complex. The video
summarizer can outsource face recognition, object recognition, speech detection, and
speech-to-text transcription. The document summarizer may also outsource entity recognition to
other services. Any of those can explicitly hire hardware services for storage or GPU access.

Out of this complex, dynamic interaction of numerous network participants carrying out
complex AI services using their collective intelligence comes a SingularityNET-wide AI mind
with a level of intelligence that is greater than the sum of its parts. (Notably, contemporary
neuroscience’s best understanding is that in the human brain, general intelligence emerges from
300 to 400 distinct subnetworks working together, each with its own architecture and set of
functions and connected to specific other subnetworks in a carefully patterned way.)
Furthermore, this emergent AI mind will be continually enhanced, as AI developers around the
world add new nodes into the network, contributing to and profiting from SingularityNET’s
economy.

The platform will enable these complex interactions through three layered resources:

1. At the bottom, the type repository in the Registry allows services to state their inputs and
outputs in a standard way. Service ads can say things like the following:

a. I provide outputs of this given type (“text”).

b. I provide outputs of this given type and value (e.g., “Language” is “English”).

26

c. I require inputs of this given type.

d. I require inputs of this given type and value (e.g., I can summarize docs if
“Language” is “English”).

2. Built on top of the type repository, we will have a collection of APIs, which refer to
concrete type data and metadata. This allows for standard specifications for AI tasks like
“face recognition,” “document summarization,” “genomic dataset annotation,” and so
forth. These APIs are a more vibrant semantic version of the standard gRPC specs
already provided by the services. As the APIs are public, any developer can implement
multiple APIs that provide the same service.

3. At the top level is an ontology of AI services that makes the APIs understandable and
browseable. This ontology will be a directed acyclic graph with a few different roots,
covering, for instance, areas of AI, application domains, and so forth. So “face
recognition” would be found somewhere in the ontology, and it would be a child node of
nodes such as “image processing,” “deep neural networks,” etc.

These three levels allow developers to find services that will accept their data as input and
perform the desired function. The document summarizer AI developer in the example above
needs this structure to identify auxiliary services needed to complete the job.

Provided the specifications at each level are precise enough, they also allow the emergence
of AIs that connect other AIs, or programmatic service finding. These are called matchmaking
agents.

AI services that serve as evaluators can be developed and launched on the network. They will
specialize in assessing and rating the quality of work done by a particular service. This will allow
users to search for services that offer a particular service (e.g., face recognition), are compatible
with a particular API, and meet a certain standard according to an independent AI evaluator.
These automated evaluations are useful for consumers, highly valuable for matchmaking agents,
and a key input to the reputation system described in the next section.

Independent evaluators and public, standard APIs make it easy for new entrants to the
marketplace to find customers. They can support popular APIs, enabling plug-and-play
replacement of existing providers, and use independent evaluators to show the quality of their
services to the marketplace.

Particularly for large enterprise customers, specialized agents can be developed to scan for
new, exciting services on the market and test them on a particular problem (for example, finding
patterns in a financial dataset), helping the customer select a service based on A/B testing or
multiarmed bandit selection.

2.8 Reputation System

As the number of services on SingularityNET grows, there will be many AI services that perform
the same function. AI service users (whether human or themselves AIs) will be faced with a

27

choice. The SingularityNET reputation system, by quantifying the reputation that each service
has earned based on its previous work, will help them navigate this choice..

This is critical for making choices about everyday transactions in the network, and it also
plays a core role in network governance and resource allocation.

Rating system design is complicated, and the SingularityNET reputation system will need to
evolve along with the network. We are currently experimenting with an initial design that will
combine explicit ratings by consumers, financial transaction trails, and machine learning to
detect fraudulent and malicious behavior.

At the most basic level, after each exchange of services for tokens (or for other services), all
parties involved are asked to rate each other on a [0, 1] scale. In this simple version, an AI
service's rating is the distribution of past rating decisions. The rating can be simplified into an
average value with a count showing how many times it has been evaluated. The average can
incorporate some time decay so more recent ratings are weighted more heavily than those in the
distant past.

Consumers and providers are not required to rate each other. Some defaults can be inferred
from their behavior: if a customer withholds payment and triggers escrow arbitration, it is safe to
assume they’re dissatisfied with a service provider, and if a customer comes back, it can be
assumed they’re satisfied. How consumers and providers manage their channels can indicate
trust (substantial commitments, long-lived channels) or dissatisfaction (the channel is not
renewed after expiration).

Ratings can be multidimensional. This multidimensional rating system is a critical
component of SingularityNET’s economic and governance models. Dimensions of reputation
can include general service performance, timeliness, accuracy, value for money, and so on. Other
aspects reflect measures taken by the network participant to prove its good influence. The
following are some examples:

● a stake deposited by a consumer or service owner, to be forfeited should its rating (in
some dimension) fall below a given threshold

● a “benefit rating” component, which derives from evaluations restricted to an AI service's
performance on beneficial tasks (this is key for future access to benefit tasks)

● validation by external actors, such as proof of ownership by a reputable company
provided by a KYC service or a legal agreement promising to uphold data privacy
regulations

● in the case of open-source software, validation via a checksum that ensures the code
being advertised matches a specific release in the repository

Despite the need for multiple dimensions and conceptual aspects in a ratings system, for some
purposes it is valuable to have a single-number rating—for example, to assess the basic integrity
and trustworthiness of an Agent. To fulfill this requirement, the SingularityNET reputation
system includes a “base reputation” rating for each Agent that is a real number between 0 and 5.
For some purposes, the number 2 is used as a “base reputation threshold.” For example, full
participation in governance is accessible only to Agents with a base reputation of 2 or higher.

28

Defense against rating system frauds and attacks is a nuanced issue and will likely require a
variety of machine learning models dedicated to analyzing transaction and rating patterns to
detect malicious participants. This is an area of active research within SingularityNET.

2.8.1 Reputation System Concept

Since the appearance of distributed computer systems without centralized governance, verifying
the reputation of participants has been a problem. This problem has been studied in its many
aspects. A reliable way to determine reputation is critical for peer-to-peer marketplaces, where
every node in the network can communicate with every other node.

The standard theoretical framework for such a solution comes from the Byzantine Generals
Problem, which features a variable number of participants (with variable levels of trust) voting
independently in order to reach a decision that is to be recorded in a public ledger so that it will
be known to the entire community.

There is a risk of an attacker spinning up many malicious nodes which act together to take
over the consensus in the attacker’s favor. We need to design defenses against this.

Current implementations of blockchain technology use various forms of weighted voting to
reach consensus. Some weight by tokens staked and others by computational power, for
example. Each consensus algorithm provides certain heuristics for estimating the trustworthiness
of a node.

2.8.2 Reputation System Options

Multiple inputs may be used to compute the reputation:

● First are the explicit ratings used by consumers to rate suppliers from which they have
received products and services.

● Second, explicit stakes can be posed by stakeholders with respect to the suppliers they
back.

● Third, there could be indirect rating information based on payments by a consumer to
suppliers. For example, multiple payments may imply that a consumer values a supplier
highly (a repeat customer is a satisfied customer.)

● Finally, information about the reputation of known vendors could be extracted from
online news sources and social media, which in turn would need to account for their
reputation.

In the simplest case, there could be just one instance of a reputation system. However, in a
distributed system with a low level of trust, multiple instances of the reputation service acting
together may be able to more accurately calculate reputations. These instances will cross-check
each other to reach consensus on reputations. Next, multiple reputation services may compute
reputations for different segments of the community in order to provide load balancing or
domain-specific reputations, which can be merged by an aggregating service. Multiple types of

29

distributed computations may take place in the same network, so that different segments of the
community have reputations computed by different groups of reputation services.

2.8.3 Reputation “Liquid Rank” Algorithm

Liquid Rank is an algorithm for computing reputation that is described in this blog post. The
algorithm can take multiple parameters and inputs into account. Primarily, for different input
ratings, it accounts for rating values of the ratings, financial values of the respective interactions,
reputation ranks of the subjects supplying the ratings, time when the rating was provided, etc.

From one perspective, Liquid Rank can be thought of as an extension of Google's PageRank
algorithm that is better suited to a marketplace, as it accounts for financial values. More
expensive and more recent payments have more impact on the reputation of a supplier. As in
PageRank, the greater the reputation of the rater, the higher the value of the rater’s ratings.

The algorithm may be implemented either in real-time—so that every transaction changes the
reputation ranks within the community—or in a stepwise fashion, where community members’
reputations are calculated and updated hourly, daily, weekly, or monthly. From a practical
perspective, the incremental version seems to be the most cost-effective and the specific period
can be configured as a system parameter.

In extremely oversimplified form, the reputation of agent i at time t is its own reputation for
previous time (Ri t-1) added to all the new ratings it has received from other agents j over the time
period between t-1 and t, multiplied by the reputations of these raters for the previous time, as
follows.

Ri t = R i t-1 + ∑j (R j-1 t* V i j t)

Reputations may be computed specifically for selected domains, such that a supplier with a high
reputation in the area of its expertise might have a much lower reputation in some other domain.
Within the same domain, different reputation scores may be computed for different
traits—timeliness, cost, accuracy, etc. These fine-grained reputations may not be included in the
first version of the reputation system.

2.8.4 Reputation Police

The goal of reputation police is to perform periodic or ad hoc inspections in order to detect
malicious patterns in rating or staking activity. There are at least two problems to be solved
along the way:

● Natural cooperation versus fake cooperation. A malicious attacker may control many
agents on the network, which give each other high ratings and transfer money to each
other in order to artificially inflate their reputations. We need to be able to differentiate
rings of agents created maliciously from natural ones. For instance, if agent A provides
agent B with image recognition service and agent B serves agent A with text
summarization, and then they make payments to each other, there is no way to discern

30

https://blog.singularitynet.io/graphs-part-3-aigents-graph-analysis-for-blockchains-and-social-networks-142fc8182389

whether the services are fake or not. We cannot discount ratings made between A and B
simply because they form a loop; doing so would discourage members of the community
from providing mutual services. The only way to resolve this is to flag the presence of
any circle or ring of this kind and then inspect the involved agents, audit their source
code, or perform an “undercover investigation,” ordering services from these agents and
checking that they perform valid services.

● Temporally spanning cooperations. Alice may pump Bob’s reputation up in January, and
then in July, Bob pumps up Alice’s reputation. This may happen organically, or they may
be collaborating to manipulate the reputation system. It should be possible to figure out if
cooperation is fake or natural using the pattern recognition incorporated in our design.

Once suspicious agents are found, fraud may be confirmed with manual agent system and code
inspections, automatic or manual undercover investigations, and other enforcement activities. If a
suspicious agent is confirmed as fraudulent, preventive measures can be enforced in a manual,
semi-automatic, or automated manner. Either the agents will be excluded from SingularityNET
or their activity will be publicly reported to the community so that the providers of staking
reputations can recall their stakes or highly reputable agents can be appointed to use their stakes
for “corrective downvoting” against the guilty agents.

2.9 AI Infrastructure as a Service

SingularityNET is built to remove the barrier between AI innovation and real-world application.
We want researchers and developers who come up with novel algorithms, techniques, and
models to see SingularityNET as the best way to deploy their technology, find customers, and
earn the financial and reputation rewards they deserve.

This mission requires us to handle the deployment and management aspects of AI services so
AI developers can focus on what they do best and AI customers can be confident that the
services they want will have high uptime, robustness, and performance and will be deployed and
managed in secure, scalable environments. We will provide AI infrastructure as a service for a
fee or share of revenues, similar to how app stores have simplified the mobile app economy for
users and developers.

Our “AI-infrastructure-as-a-service” tools will play the role of similar tools by platforms
such as AWS and Azure, but with the following design goals tailored to the needs of networked
AI:

● Optimize for the computational requirements of training and deploying machine learning
models. This goes beyond deep neural networks and GPU usage and considers graph
processing, multi-agent systems, dynamic distributed knowledge stores, and other
processing models needed to allow the emergence of networked AGI.

● Support scalable processing of stateful services, which is a challenge in current cloud
platforms but necessary for many tasks such as those of conversational agents,
task-oriented augmented reality, personal assistants, and others.

31

● Include secure support for public, private, and hybrid cloud deployments (public–private
mix and edge–cloud mix).

● Dynamically optimize compute locations to maximize compute and data proximity,
improving performance and reducing bandwidth costs.

We will leverage critical open-source technologies such as Kubernetes and OpenStack and
support deployment of our infrastructure-as-a-service (IaaS) solution both on top of existing
cloud platforms (where we make optimal use of built-in tooling) and bare metal data centers.
One key consideration is using cryptocurrency mining hardware to train AI models and
long-running AI reasoning and inference tasks.

2.10 Deployment in Robots and Embedded Devices

Many SingularityNET services will require powerful computing resources and will, therefore, be
hosted in the cloud. However, the SingularityNET network itself is not heavyweight, and it is
perfectly doable for services on the network to be embedded in robots, IoT devices, and other
low-power devices. These components would run an embedded component that provides SDK
and daemon functionalities, allowing them to call other services on the network while also
providing services themselves—for instance, a sensor providing a data feed, which does not
require much computation. This combination of edge-embedded network nodes and cloud-based
computing power opens up many possibilities in IoT and robotics—some obvious, some creative
and unexpected.

This will also enable robots, such as the humanoid robots from Hanson Robotics and robots
from other providers, to acquire cognitive services from cloud-based SingularityNET AI services
in exchange for micropayments and to receive micropayments from other SingularityNET
network participants in exchange for data. It will also enable robots to carry out small economic
transactions with each other based on purely local network interactions where internet
connectivity is an issue.

2.11 Blockchain Agnosticism

The SingularityNET platform currently depends on the Ethereum blockchain. It may be useful or
even necessary to support other existing blockchain technologies in order to broaden adoption,
improve scalability, or achieve other goals. The platform architecture is designed with this
possibility in mind, and it attempts to concentrate all interactions with the Registry and the MPE
contract in small code components.

Throughout 2019, we will work on turning those components into libraries with as much
generality as possible. A decision on which other blockchains to support, and when, has not yet
been made, but encapsulating the code in libraries will ensure that as the platform evolves, the
possibility of supporting other blockchains is preserved and the amount of work required will be
manageable.

32

2.11.1 Reputation-Based Consensus

We intend to test an evolution of the proof-of-stake consensus algorithm that we call Proof of
Reputation, which combines several factors: stake, activity in the network, specific rating aspects
(particularly benefit rating), length of time elapsed with activity and rating levels above specific
thresholds, and others. Machine learning can be used to optimize the combination of factors.

There is a significant overlap between what we intend with Proof of Reputation and the NEM
blockchain’s “Proof of Importance” framework, so our Proof of Reputation will borrow NEM’s 16

ideas and perhaps some of their algorithms. Some component of proof-of-work may also be
desirable, but we would rather solve some beneficial machine learning problem than burn cycles
on cryptographic puzzles. The computational cost of these machine learning tasks varies much
more than for most crypto puzzles, so this idea needs refinement over the next few years. It
seems most likely that, at the end of a period of refinement and experimentation, we will end up
with a Proof of Reputation framework incorporating some NEM-like aspects with a machine
learning–based proof-of-work component.

2.12 Incremental Improvements to Current Components

In addition to the new components just described, we plan improvements to the existing
components that will make the platform more usable and flexible for AI developers and
consumers. These improvements will be released gradually throughout 2019 and include the
following:

● A web dashboard and control panel for AI service owners, providing them with
monitoring, metering, logging and other usage statistics for their services and allowing
them to register and manage services; this is essentially a web-based complement to the
CLI

● Flexible pricing models, allowing fixed-price monthly and yearly subscriptions to a
service (with optional usage caps) and bulk discounts

● Asynchronous and streaming request support for AI services

● A refactored Marketplace DApp with injectable AI service UI components and no need
for a centralized marketplace search service

● SDKs for Java, Javascript (Node.js), and Go

● A full-service mesh abstraction provided by the daemon that will make calls between AI
services more convenient.

16 https://nem.io/NEM_techRef.pdf.

33

3. Democratic Governance

SingularityNET is not only a network of AI agents but also a network of humans who use,
create, rate, and otherwise interact with the AIs. Because it is a decentralized organization, the
ongoing health and growth of SingularityNET will rely on democratic decision-making by
network participants. A democratic process is used to make decisions regarding network
operation and to allocate newly minted AGI tokens.

3.1 Reputation and Stake-based Voting

Voting is filtered by reputation; only Agents with a base reputation above the threshold of 2 will
be counted. Furthermore, only Agents whose owners have been verified by appropriate KYC
procedures will be permitted to vote (although other Agents can still participate in the network
by offering or purchasing services).

The initial default plan is to use standard KYC methodology, likely via partnership with an
external firm specializing in KYC for blockchain-based enterprises. Before year 4 of the
network’s operation, this will be replaced by a decentralized KYC methodology through which
Agents are “KYC’d” by other Agents rather than any central authority. One possible approach is
essentially a “verification federation” consisting of Agents that are democratically approved to
perform KYC functions.

The amount of voting power that an owner (a verified entity that owns an agent) has
regarding core network operation issues and the distribution of the future development reserve is
given by the following formula:

Let stake (O) denote the total stake of owner O across all its Agents (i.e. its total amount of
AGI token holdings); let stake (A) denote the stake of a particular Agent A; and let rep(A)
denote the base reputation of Agent A. Let ag(O) denote the set of Agents owned by owner O.

We use the following definition:

Here L is a boundary so that for x < L, the function Ψ behaves piecewise linearly and for x ≥ L,
the function Ψ behaves logarithmically (and c is just an arbitrary normalizing factor).

Then we set

34

The combination of reputation and stake in this formula gives more voting power to more highly
rated entities while preventing attacks involving large numbers of sockpuppet agents that have
good reputations but carry out few transactions.

At a high level, one can think of this voting formula as a sort of “Proof of Contribution”:

● The use of the logarithmic function in the first term of the formula means that owners
with more AGI tokens get to vote more, but that once the amount of their token
ownership exceeds L, their voting power increases according to the order of magnitude of
their AGI ownership rather than linearly.

● The second term in the formula means that owners whose agents are doing useful (highly
reputable) things get more voting power. The use of the Ψ function is intended to avoid a
dynamic in which owners are rewarded for splitting up their AI functions among many
small agents, each with a tiny stake but a good reputation. For stakes up to size L, there is
no reward for splitting up agents smaller than that size. For stakes above L, there is some
reward for splitting up agents smaller than that size. This is analogous to a law that treats
businesses smaller than a certain size differently than larger ones. The parameter L could
be set initially to be equal to roughly 100,000 AGI tokens, for example.

The democratic mechanisms in the network are based on liquid (or delegative) democracy,
meaning that when an agent A is qualified to vote on a decision, Agent A may also choose to
delegate its voting power to some other Agent, Agent B. There may be smart contracts that
allocate votes on some topics to some Agents based on metadata attached to the decisions or
other more complex criteria. (For example, if you trust another Agent to do its due diligence on
charitable projects, you may delegate to it your voting power for decisions about which projects
are beneficial, but for no other decisions.) The network will provide standard smart contracts to
automatically delegate votes, but Agents can of course use any tools they wish for this purpose.

Major changes to the network will require more votes than minor changes. By major
changes, we mean, for example,

● changes in the percentage of tokens allocated to different purposes (e.g., curation rewards
versus benefit tokens),

● changes to how base reputation is calculated,

● changes to the quantitative parameters governing network economics,

● any decisions regarding creating more AGI tokens beyond those initially mined, or

● key design changes like moving to different blockchains and consensus algorithms.

35

By minor changes, we mean things like modifications to the APIs and ontologies used in
inter-agent interactions.

For decisions regarding benefit tasks, the proposed mechanism will use a combination of
votes by reputable Agents and benefit votes. The network gives benefit votes to Agents in
proportion to their benefit quality ratings. (“Major changes” related to benefit tasks are changes
to the system that certify tasks as benefit tasks.)

3.2 Transitioning to Full Democracy

In the early phases of network development, the Foundation will make some of the governance
decisions. Decision-making will transition in phases to a purely democratic governance as the
network matures, with the following specifics:

● In years 1 and 2 of network operation (following the initial token issuance event), major
changes are to be determined by the Foundation in accordance with the bylaws of the
Foundation installed at the time of network inception, while minor changes will be
determined by a 51% majority of AGI token holders.

● In years 3 and 4

○ Major changes in the operation of SingularityNET: agreement of the Foundation
plus a 51% majority of AGI token holder votes

○ Minor changes in the operation of SingularityNET: a 51% majority of AGI token
votes

○ Major decisions related to benefit tasks: agreement of the Foundation plus 51% of
AGI token votes plus 51% of benefit votes

● From year 5 onward

○ Major changes in the operation of SingularityNET: a 65% supermajority of AGI
token votes

○ Minor changes in the operation of SingularityNET: a 51% majority of AGI token
votes

○ Major decisions related to benefit tasks: a 65% supermajority of AGI token votes
plus 65% of benefit votes are required

3.3 Decisions regarding Benefit Tasks

In SingularityNET, a percentage of the network’s assets are to be designated as “benefit tokens.”
(The exact percentage is determined by democratic mechanisms described in this section.) The
democracy then votes on what tasks are considered “beneficial”; they would include things like

36

researching cures to diseases. Agents on the network can earn these designated benefit tokens by
doing beneficial tasks.

A specific set of democratic mechanisms is used to decide which tasks, carried out by which
Agents, are entitled to benefit tokens. As with other decision-making, this will transition from
Foundation control to fully democratic control.

We introduce the role of benefit deciders: Agents authorized by the network to decide
whether specific tasks fulfill the criteria needed to quality as benefit token recipients.

We propose the following:

● Each Agent gets a certain number of “benefit votes” to cast each month, based on its
benefit rating.

● Benefit tasks are assigned to categories. In order for a category to be considered as a
potential benefit task, it must be nominated by 2% of benefit votes cast during a month.
We may create web-based tools for suggesting new tasks, soliciting votes, and easy
voting.

● Once a qualified benefit decider nominates a certain task category as a potential benefit
task, then the community votes on whether it should be ratified as a benefit task. Voting
power on this is proportional to benefit rating. If 25% of votes cast are in the affirmative,
then the task type becomes a benefit task.

● Once a benefit task is approved, any Agent capable of performing it and possessing a
sufficiently high rating and benefit rating will receive benefit payment for doing it.

Research on improving the theory of benefit will initially (and perhaps ongoingly) be rated as a
benefit task in order to incentivize the distributed community to contribute to this type of R&D.

4. High-Level AI Services

A large, flourishing SingularityNET will contain AI Agents of multiple types interacting in
complex ways. Some AI Agents will specialize in highly abstract mathematical algorithms,
others will deliver concrete end-user services and outsource their back-end algorithmics to sets
of other AI agents.

The Foundation will initially seed the network with its own Agents. For this work, we make
the distinction between “core AI algorithmic services” and “high-level AI services,” the latter
being specific concrete functionalities to end users. There may be gray areas, but this distinction
adds valuable clarity beyond generically thinking about “AI Agents.”

This section reviews some of the domain-specific, high-level AI services being developed by
the SingularityNET Foundation’s AI development team. The following section digs into the AI
R&D being pursued by the SingularityNET Foundation team, some of which has already resulted
in AI agents prototyped on the SingularityNET network and used within high-level AI services.
Others are at an earlier stage, planned for launch on SingularityNET later in 2019 or in 2020.

37

4.1 Summary

4.1.1 The Need for AI Solutions

Recent advances in AI have driven an explosion of intelligent applications that will dramatically
change the way we live. Figure 10 below demonstrates the vast array of enterprise companies
that use AI in their product or service. Applications can be found in every vertical and functional
area, from manufacturing to HR. For example, manufacturers are using deep neural networks to
quickly identify manufacturing flaws, far surpassing the speed and accuracy of their existing
techniques, and HR professionals are using AI to help them sift through thousands of resumes to
build a short list of candidates efficiently.

In their 2018 assessment of the AI market, McKinsey Global Institute estimated that the
impact of deep neural networks alone would be between $3.4 trillion and $5.7 trillion in
incremental value for organizations.

All these applications are driven by AI algorithms that are packaged as AI services that
provide customer solutions. SingularityNET is a network of such AI services that anyone can
contribute to, making cutting-edge AI techniques available to everyone.

Figure 10. Companies that either provide AI as a service or incorporate AI in their
product/service offering

38

4.1.2 What Do We Mean by AI Services?

At the most abstract level, one can think of an AI service on SingularityNET as a function with a
set of inputs and outputs. The service could be a low-level service that does a specialized unit of
work or a higher-level service that calls upon a series of lower-level services to complete
components of its overall function.

For example, in Figure 11 below, A is the high-level AI service. It calls three lower-level
services: A.1, A.2, and A.3.

E is another high-level AI service on SingularityNET. It calls on A. Other calls on the
services of A are made be App 1, a software application, and S1, a smart contract on another
blockchain.

Figure 11. AI services on SingularityNET can be called in many ways: by another
SingularityNET service, by a smart contract on another blockchain, by an application, or directly

39

An example of a high-level AI service is an image captioning service. This service would create
a description of an image (e.g., “A poodle is sleeping on a kitchen floor.”) The main service
would be able to create a caption based on the relative positions of identified objects in the
image. The service would not itself identify the objects, but would instead call lower-level
services to do so and then use that information to create the caption for the image.

4.1.3 Higher-level AI Services Help Drive Growth

It is not always immediately apparent how low-level services focused on AI algorithms can be
applied to solve everyday problems. This is where higher-level services help. These provide
convenient interfaces to tools that solve domain-specific problems. The more of these high-level,
user-facing services there are, the greater we expect the activity on SingularityNET to be.

Figure 12. The SingularityNET flywheel

This relationship is illustrated in Figure 12 above, where the blue flywheel represents the activity
on SingularityNET; i.e., how often services are being called. The faster the flywheel turns, the
larger the blue circle will become, reflecting the greater level of activity on the network. The
actions shown around the wheel drive the speed of the wheel. Starting from the top left corner,
the greater the selection of AI services on the network, the wider the selection of AI projects will
be – which will mean more high-level APIs will be created. This will lead to better user

40

experience, which in turn will drive more traffic to the network. This traffic will attract more
developers to deploy AI services on the network, and so the cycle continues.

Through this activity, additional funding will be available to the SingularityNET Foundation
to invest in the platform and infrastructure, which will result in improvements in speed and
reliability. This, in turn, will lead to improvements in the user experience which will drive more
traffic to the platform.

4.2 AI Services Provided by the SingularityNET Foundation

For our initial work on high-level AI services within the SingularityNET Foundation, we have
selected four areas of focus that we describe in moderate detail below:

● Network analysis

● Social robotics

● Bio-data analytics

● Probabilistic graphical models and serious games

4.2.1 Network Analysis

4.2.1.1 Motivation

The age of big data has taught us the “network perspective”: that the connections between things
are often as interesting as the things themselves. Network analysis involves a broad range of
tools that take the network perspective, siphoning streams of meaning from what is otherwise a
firehose of information. The tools we are building on SingularityNET deal with areas like the
following:

● Social network analysis and visualization, where graph algorithms from mathematics are
used to describe the shape of a network as a whole and properties of the parts like
centrality. This allows us to see, for example, how well network members communicate
with each other, and to infer who the most influential communicators are.

● Probabilistic graphical models, where algorithms from probability and statistics are used
to describe causal relationships, so we can tell, for example, the webpage that people
would be most likely to want to visit or the best way to treat a patient’s illness given all
the facts we know about the patient.

● Network evolution, where the dynamic unfolding of network relations over time is
studied using evolutionary computation and neural networks that both generate and
predict network outcomes. Particular attention is paid to what causes growth and decay in
networks, so we can predict, for instance, what goods and services will be in demand next
year in a particularly competitive market.

41

● Networked artificial intelligence, the study of cooperative and competitive connections
between distributed artificial intelligence programs and the processes by which these
algorithms self-organize into better solutions. We use the principles of distributed AI not
only to design the SingularityNET dynamics, but also as a tool to save human labor and
make our AI programs serve our customers more effectively.

● Agent-based simulation of complex adaptive systems, the emulation of the virtuous and
vicious feedback cycles in real-world systems to find the best policies to achieve goals.
For example, we may want to explore ways to break the vicious feedback cycles of
corruption in our society, develop an alert that the housing market is in a bubble, or
emulate symbolic interactionist social feedback in Sophia the robot.

4.2.1.2 Examples of Applications

Our specialists in applied distributed artificial intelligence have developed various network
analysis tools, each with its own practical applications. These include the following:

● A tool that reduces human labor in choosing and parametrizing AI algorithms through
feedback between artificial intelligence modules. Modules are rated with tests specific to
the module and with the tests set by their consumers, among others. For some classes of
AI programs (for example, unsupervised algorithms such as clusterers and vector spaces),
these multiple weak tests measure effectiveness better than any one strong test.

● A natural language tool to reduce the human labor of putting data into applications. This
tool will interpret natural language texts (such as medical research papers) in a way that
is both understandable by humans and needed by downstream AIs. It is designed to
nudge unsupervised clusterers into a human-designed ontology through seeding with a
few exemplars, rather than with the large lists required by supervised learning techniques,
using networked relations.

● A tool to test social policy that emulates micro-level social psychological phenomena
(such as cognitive dissonance and symbolic interactionism) in AI agents to explore how
these micro behaviors create and react to macro social patterns. Treatment policies for
social ills are applied to individual agents, where we can observe the effects on agent
interactions and explore treatments. This tool has been applied to develop defense
strategies against hybrid warfare campaigns that cause polarization in populations and to
develop policies that alleviate corruption in societies, and has done so via award-winning
analyses.

● A tool to combine the outputs of multiple disparate simulated realities into a single
coherent whole using an intelligent fabric of probabilistic ontologies that automate the
entry of moves in each reality and run models ahead in a gametree to evaluate the results
of moves. This tool was applied to an award-winning analysis of large social systems and
is useful for any data fusion application.

42

● A market-testing tool that incorporates adaptive economic agents. In work conducted for
an insurance company, our researchers used this tool to test the effectiveness of payment
innovations in increasing the quality of healthcare in America under the Affordable Care
Act and to find the best pricing and offerings for new businesses in particular markets,
via analyses that include higher-order effects.

● A tool to convert real-world data into a form that can be played as a game and optimized
by artificial intelligence techniques. This tool was applied to personalized medicine using
healthcare claims data to map out the likely effects of treatments, combining the accuracy
of deep neural networks with the ability of epidemiological applications to tease out
causal links in data.

4.2.1.3 SingularityNET Simulation

Alongside practical applications such as those mentioned above, we have used network-theory
abstractions to design and build a miniature SingularityNET, which serves the double purpose of
testing SingularityNET “policy” settings such as the reputation system and offering the same
type of analysis that the full SingularityNet will offer but in a miniature form that can be run on
an analyst’s personal computer.

This miniature SingularityNET is a small market in which programs may send feedback to
each other through price signals. Price signals serve as an assignment of credit. This simulation
allows Python programs, models, and AIs to coevolve. It can be used for any coevolutionary
purpose.

This simulation shows aspects of cognitive synergy between agents having emergent
cognitive properties above and beyond those of the individual agents.

Because the agents in this simulation model can be made to run various AI programs, the
simulation can also be made to do other things besides simulate a realistic SingularityNET. For
instance, if you simulate a SingularityNET where all the AI agents are running clustering
algorithms, then the simulated SingularityNET becomes essentially an emergent-level clustering
meta-algorithm.

One can carry out various AI tasks (like clustering or prediction) or real world
system–modeling tasks (e.g., modeling a political system or a real-world market) by the
methodology of creating a simulated SingularityNET full of simulated agents running actual AI
algorithms that are configured and distributed in a certain way. This approach can be used to
especially good effect in situations where one AI agent’s modeling process can benefit from
feedback from another AI agent’s modeling process.

For example, one such application is feedback between the interpretation of data and multiple
overlapping disparate models of the processes that created the data—together, the data and the
models create a better model as a whole. In our work on this sort of data fusion through
feedback, we use specialized data processors and models that are designed to accept and adjust to
feedback. These include a clusterer that can take in exemplar inputs and an agent-based model
with special data-absorbing properties that integrate theory with data. A similar approach can be
taken with more sophisticated AI methods, such as coevolutionary neural networks, that put parts
of neural networks together with other types of AIs in a connectionist ecosystem.

43

4.2.1.3.1 Social Media

The algorithms of social media are suspected of contributing to many of our modern social
problems and of being poor proxies for natural social interaction—but they are still essential to
modern business.

Foremost on the minds of social media executives is how to preserve the quality and utility of
business, social, cultural, and political interactions, but the science of how social media
algorithms affect the social fabric is poorly developed.

When artificial social environments are constructed in digital space, their rules and
algorithms are a proxy or stand-in for the rules that govern social interaction in the real world.
SingularityNET’s reputation system, for example, is an algorithmic proxy for how people
determine who is authoritative and worthy of attention.

We do not assume that a painful direction of technology is inevitable, but rather seek to
explore how pain could be avoided by improving the social proxy, especially to identify the
qualities of natural social interactions that protect people while helping them to know each other
and learn from each other.

We simulate natural social interaction using insights from social science and compare it to
multiple social media and social proxy algorithms. We create measures for social values, such as
democratic meritocracy and economic growth, and test them against social media social proxy
algorithms.

In particular, we test popular crowdsourcing algorithms for their effect on the emerging
oligarchy and explore alternatives for a way to protect democracy. SingularityNET researcher
Dr. Duong’s history of award-winning social science policy testing is used at SingularityNET to
test our reputation system.

We want to extend these tests to include measures of SingularityNET values, such as
fairness; i.e., the ability to give all software a chance to get chosen in proportion to its merit. We
will exploring creating these tests by combining Kaggle-type verification with crowdsourcing,
and we will explore how the reputation system should change at different stages of
SingularityNET growth.

We extend the same model of oligopoly and related dynamics in social networks to tests and
measures of the ability of social media algorithms to fill social needs in general, starting with
SingularityNET values. In particular, we seek to demonstrate that algorithmically promoting
democracy and meritocracy creates better products.

44

4.2.2 Social Robotics

4.2.2.1 Motivation

Our social robotics research track is focused on improving the well-being of humans through the
use of natural interfaces and artificial intelligence. Instead of adapting human behavior and
society to technology, this adapts technology to meet natural human behavior, creating social and
cross-culturally intuitive interfaces. We aim to achieve this by researching and developing
embodied humanoid robots and virtual avatars, or humanoids.

Hanson Robotics, one of SingularityNET’s cofounding firms, is focused on humanoid robots
capable of interacting naturally with people. SingularityNET and Hanson are designing systems
to nurture multiple species of robots as next-generation interfaces for delivering AI services and
applications and fostering the emergence of global artificial general intelligence.

AI drives these technologies in several key ways:
Deep learning, machine learning, and computer vision models enable auditory and visual

understanding of human interactions. Accurate perception is at the root of all social interactions
and shapes the quality and flow of interaction with artificial humanoids.

In this track, we emphasize perceiving social cues. We aim to advance the state of the art in
multimodal emotion recognition, a field with increased visibility and relevance in recent years,
and we advocate for inclusive and cross-cultural research in both data collection and modeling.
We are also interested in training machines to understand relationships between people—where
they are looking, at whom they are looking, to whom they are talking, the eye contact they make,
and their body posture cues. While a lot of recent advancements in audiovisual perception have
been made in the field of deep learning, we believe we can contribute through our holistic
approach of data collection through all aspects of humans–humanoid interactions.

This track involves active research into not just perception but also the actions of our
humanoids, such as speech synthesis, body gestures, and facial movements. We are developing
methods of speech synthesis more emotionally expressive than the current state of the art and
capable of a wide range of different intonation styles. Because of our focus on humanoid agents,
we also focus on data-driven modeling of facial expression and facial expression mirroring.

We have built a dialogue and behavioral engine developed within the GHOST framework
(the General Holistic Organism Scripting Tool, which described in section 5.2.6). It aims to use
the OpenCog cognitive architecture to integrate our data-driven perception and expression
models with the behavior of our humanoids. Our initial implementation resembles traditional
rule-based approaches to dialogue; however, through the shared knowledge representation and
tight integration within the AtomSpace (described in section 5.2.7) even at this first stage of
design and development, we can integrate all components more tightly than traditional
turn-based systems can. Over the course of research and development, we aim to replace more
and more of the rule-based aspects with higher-level algorithms developed within other tracks of
SingularityNET research, such as language learning, PLN, ECAN, etc.

45

4.2.2.2 Examples of Applications

Applications of the social robotics–related technology described above follow:
The Loving AI project was research into the emotional impact of interacting with kind,

loving humanoid embodiments. We have used Sophia the robot in conjunction with GHOST (see
section 5.2.7) and our emotionrRecognition deep neural network in this research. We have used 17

this configuration in IRB-approved research trials in Hong Kong in 2017 (N=26) and San
Francisco in 2018 (N=35). Preliminary results show that interactions, specifically guided
meditation sessions with audiovisual components, emotionally responsive dialogue, and facial
expression mirroring, did lead to increased well-being and more positive feelings. The results
also suggest that humanoid robots or audiovisual avatars are more effective at this than a purely
audio-based interface.

The General Holistic Organism Scripting Tool (GHOST) is also being used as a
conversational agent within the Mozi computational biology project. There, handcrafted rule
bases have been written to guide the user through a constrained, yet natural, language dialogue.
Several key components have been developed to interface this conversational agent to the
experimental setup used within the project in order to provide a more fluid and natural interface
to a vast plethora of possible configurations.

4.2.2.3 Plan

We have integrated the OpenCog-based GHOST tool with HEAD, the main control system for
Sophia the humanoid robot. This integrated system is currently being used for research and 18

development in our offices, social robotics research trials, and some of our public events.
We are currently researching adding novel, goal-directed structures to the rule base to allow

for the compositional design of skills and freeform dialogue. Also,we are improving the
architecture by developing strategies for unit-testing both individual abilities and the entire
architecture throughout the development process.

Our next steps are about replacing more and more of the rule-based structures with deeper
cognitive understanding using our unsupervised language learning initiatives, PLN, ECAN, and
other components of OpenCog and SingularityNET. We are also integrating more and more
services hosted on SingularityNET in this project.

4.2.2.4 Services

Some of the specific AI services under development in the social robotics track are the
following:

17 https://arxiv.org/abs/1709.07791.
18 https://github.com/opencog/ghost_bridge.

46

Action

Dialogue

● GHOST dialogue engine based on OpenCog AI

Expression

● Facial expression generation

Perception

Visual

● Faces

● Face recognition/tracking

● Face identification

● Gaze tracking

● Facial expression and emotion recognition

● Visual speaking and non-speaking detector

Bodies

● Pose tracker

● Robust person detection

● Gesture recognition

● Gait characterization

Auditory

Voice

● Speech recognition

● Voice identification

● Voice activity detection

● Laughter detection

● Multiple-speaker speech separation

47

● Detection of what language is being spoken

4.2.2.5 Mind-Modeling and Loving AI Development

We are currently working on extending the Loving AI pilot program to add new functions to the
OpenCog AI system related to unconditional love. These functions could be manifested via any
reasonably flexible robot or avatar; however, for the immediate future we will continue using
Sophia for experimentation and testing. Sophia has particularly strong emotional expression
capability and a global media presence, and she is a system our team is familiar with.

The work in 2019 will focus on giving OpenCog/Sophia a genuine “model of mind” for the
first time. The goal will be for the AI/robot to build a working internal model of thoughts,
feelings, motivations, intentions, etc. of the person with whom it is interacting. This would give a
significant boost to the robot’s understanding of people with whom she interacts, which we
believe is required for her to genuinely express unconditional love. Of course this initial “model
of mind” will not be the same as a typical human’s model of other humans’ minds, but it will be
a start in this important direction.

One of the motivations of this work is to lay the groundwork to extend the Loving AI
protocol so that the AI can learn about the person as they are interacting and to some extent bring
that learning to bear in its statements and questions to the person. This will also allow for
repeated sessions with the same person with continuity, as the robot builds and improves its
model of the person.

This mind-modeling work integrates emotion-modeling as a result of leveraging and
improving the AI framework’s emotion regulation, enabling the AI’s emotions to better reflect
and respond to the human’s emotions that it models. This will give Sophia (and any other robots
or avatars controlled by the software) richer emotional expression, better emotional connection
with others, and the beginnings of an understanding of human emotion in general. All of these
are steps toward “skillful means” in expressing and eventually feeling unconditional love.

4.2.2.6 Social Cognition with Deep Recurrent Neural Networks

In our current social cognition research, we use the power of deep recurrent neural networks to
represent social mental states, including states of cognitive dissonance, to measure and predict
human reactions to information and then apply the results to improve the messages sent to
persons. These results could automatically detect and alert to attempts at psychological
manipulation that take advantage of human cognitive dissonance and tribalism, or they could
simulate realistic social reactions on an individual level, such as feedback between Little Sophie
robot and a “parent.” Our scientists originally wrote similar programs using the Boltzmann
machine to simulate population reactions to information operations. This tool can be applied to
any case with multiple, possibly dissonant, social information messages, whether it focuses on
the individual or a population.

48

4.2.3 Bio-data Analytics

4.2.3.1 Motivation

The explosion in the quantity and complexity of experimental data generated by biomedical
research is widely recognized. 19

The amount of data being produced in genomics daily is doubling every seven months, so
within the next decade, genomics is looking at generating somewhere between 2 and 40
exabytes a year. 20

This has created a bottleneck in converting new discoveries into clinical applications —the 21

so-called “translational medicine” pipeline—and it is widely understood that machine learning
and other AI approaches must be applied to increase the speed of processing data and close this
gap. A software infrastructure is needed to process and store the data, analyze and summarize it 22

in an understandable form, integrate it into comprehensive predictive models of normal and
pathological processes, and apply these models to diagnose and treat patients. 23

4.2.3.2 Examples of Applications

Systematic Knowledge Discovery: Literature Aggregation and Text Mining

With an exponentially growing number of scientific publications (global scientific output
doubles every nine years), manual knowledge collection and curation has become an extremely 24

challenging task. Networks of institutions continuously aggregate new knowledge in thousands
of knowledge bases using both manual curation and various automated methods. A single
experiment produces thousands to millions of distinct measurements that must be sifted through
by referencing this existing knowledge to construct a causal hypothesis explaining the
phenomena under study. Automating searches of the body of scientific literature and of the
experimental findings specific to the user’s research question is a crucial goal in the application
of AI to biomedical research.

19 https://www.cnbc.com/2015/12/10/unlocking-my-genome-was-it-worth-it.html;
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955563/;
https://www.liebertpub.com/doi/full/10.1089/big.2014.0023.
20 https://www.washingtonpost.com/news/speaking-of-science/wp/2015/07/07/sequencing-the-genome-Creates-so-
much-data-we-dont-know-what-to-do-with-it.
21 https://www.nature.com/news/medical-genomics-gather-and-use-genetic-data-in-health-care-1.15065;
https://ieeexplore.ieee.org/abstract/document/8123845.
22 https://content.iospress.com/download/bio-medical-materials-and-engineering/bme1488;
https://www.ncbi.nlm.nih.gov/pubmed/16207526.
23 http://ieeexplore.ieee.org/document/8123845.
24 http://blogs.nature.com/news/2014/05/global-scientific-output-doubles-every-nine-years.html.

49

https://www.cnbc.com/2015/12/10/unlocking-my-genome-was-it-worth-it.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955563/
https://www.liebertpub.com/doi/full/10.1089/big.2014.0023?src=recsys
https://www.washingtonpost.com/news/speaking-of-science/wp/2015/07/07/sequencing-the-genome-creates-so-much-data-we-dont-know-what-to-do-with-it/?noredirect=on&utm_term=.1fb28da3cf30
https://www.washingtonpost.com/news/speaking-of-science/wp/2015/07/07/sequencing-the-genome-creates-so-much-data-we-dont-know-what-to-do-with-it/?noredirect=on&utm_term=.1fb28da3cf30
https://www.nature.com/news/medical-genomics-gather-and-use-genetic-data-in-health-care-1.15065
https://ieeexplore.ieee.org/abstract/document/8123845
https://content.iospress.com/download/bio-medical-materials-and-engineering/bme1488?id=bio-medical-materials-and-engineering%2Fbme1488
https://www.ncbi.nlm.nih.gov/pubmed/16207526
http://ieeexplore.ieee.org/document/8123845
http://blogs.nature.com/news/2014/05/global-scientific-output-doubles-every-nine-years.html

Systematic Knowledge Discovery: Cell Population and Organ-level In Silico Modeling

In silico experiments and analyses use mathematical modeling and computer simulations to
overcome various limitations of in vivo and in vitro methods and support the needs and research
challenges of the biomedical and pharmaceutical industries. The empirical and physics-based in
silico models allow preliminary discovery and testing of novel genetic and metabolic networks to
be validated in experiments. The reconstruction process for genome-scale metabolic networks is
well developed but labor intensive. Thiele and Palsson published the best protocol in this area 25

of research.
However, even with the impressive progress in computational biology and chemistry, the

number of tissue- and organ-level simulations is limited. So far, only three organs—the mouse
pancreas, the C. elegans gonad—and partial rodent brain development—have been modeled in
silico. 26

On the other hand, some models—for example, the human body physiology models
developed within the Physiome project and the Virtual Physiological Human initiatives—have
already been applied to solve some clinical problems and have brought in silico modeling closer
to clinical translation. 27

Diagnostic Biomarker Discovery

Biomarkers indicate alterations in one’s biological state or health condition. The discovery of
novel biomarkers and advances in high-throughput technologies, such as DNA microarrays and
mass spectrometry, provide direct support in observational and analytic epidemiology, clinical
trials, screening, diagnosis, and prognosis. Many statistical and machine learning methods have
been adopted for measurement and evaluation purposes and for building predictive models based
on biomedical data.

Drug Target Discovery

One of the major challenges in biomedical sciences is identifying the metabolic and regulatory
pathways of disorders for rational drug design and target-oriented drug development. A
simulation of a metabolic network in silico allows for simulated testing of these predicted
genotype-phenotype-drug metabolic pathways.

In Silico Patient Modeling for Personal/Precision Medicine Diagnosis and Treatment
Planning

The future of medicine will be highly personalized, catering holistically to each patient’s unique
biological blueprint. Science is beginning to uncover the unique dynamics of each person’s
biological structure by using machine learning tools to piece together a full atlas of an
individual’s genomics, proteomics, and other “-omics.” Stronger models that connect our
individual microbiomes to our genomes, metabolomes, and epigenomes are beginning to uncover

25 https://onlinelibrary.wiley.com/doi/book/10.1002/9781118617151.
26 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896968/.
27 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055650/.

50

http://physiomeproject.org/
http://www.vph-institute.org/
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118617151
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896968/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055650/

the delicate connections that these factors have in an individual’s body. Once we fully
understand these connections, we will be able to bridge accurate diagnosis techniques with
highly targeted therapy (so-called theranostics), develop successful strategies for creating
high-impact therapeutics, and “shift the emphasis in medicine from reaction to prevention and
from disease to wellness.” 28

Figure 13. Main focus areas for developing and sustaining a digital patient 29

28 https://onlinelibrary.wiley.com/doi/book/10.1002/9781118952788.

29 Image from The Digital Patient, (2016), doi:10.1002/9781118952788.

51

https://onlinelibrary.wiley.com/doi/book/10.1002/9781118952788
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118952788

4.2.3.3 Services

The following are some specific AI services under development in the bio-data track. Some will
be released with the beta version of SingularityNET in February 2019 and some are slated for
later release based on ongoing work.

Supervised Classification of Binary-Valued Data Using MOSES

The SingularityNET agent accepts a data file with/and classification label information and
program algorithm and validation parameters and returns a file of scored combo models and a
ranked list of model features.

User Interface for Supervised Classification of SNP or Gene-Expression Data Using
MOSES

A web-based interface accepts a data file input with category labels, provides an interface for
setting algorithm and validation parameters, optionally solicits an Ethereum wallet address, and
returns a file containing scored combo models and a ranked list of model features generated by
the MOSES agent described in (1).

Annotation of MOSES Results, or other Gene Sets, Using AtomSpace Knowledge Base

A web-based interface accepts a list of gene names or reference IDs; optionally provides a screen
to select from a list of reference knowledge bases, annotation types, and filtering parameters; and
returns a table of the input genes and their annotations and/or a graph representation of the input
genes and their annotations in a selected standard graph format.

Symbolic Regression on Genetics Datasets

The SingularityNET agent accepts a genetic data package consisting of a genetic and numerical
biomarker dataset, numerical outcome values associated with each sample, and program
algorithm and validation parameters. It outputs a results file containing a model that predicts the
phenotype number corresponding to that genetic data package. Optionally, either FFX or
MOSES algorithms can be indicated by the user.

Textual User Interface for Querying Result Sets or Knowledge Bases

A natural language query parser based on GHOST (which is described in section 5.2.6) will
allow context-dependent queries, given an AtomSpace (OpenCog’s database standard, described
in section 5.2.7), with selected knowledge bases and analysis results as input.

52

Supervised Classification of Variant/SNP Dose-level Data Using MOSES

The MOSES interface will be expanded to facilitate preprocessing of whole-genome variant data
and a feature-variable format indicating allelic dose.

Annotating Variant/SNP Lists or Other Genetic Base-level Data Using AtomSpace
Knowledge Base

The feature annotation service will be expanded to variant/SNP lists with optional allelic dose
that will be annotatable through custom AtomSpace knowledge bases and will incorporate
open-source variant annotation service code at https://github.com/DEIB-GECO/GMQL and
https://github.com/bulik/ldsc.

Neural Net Modeling of Sequence-Expression Links (Wrap Existing Open-Source
Code)

Using the sequence/variant feature format, a sequence and tissue type is inputted and a prediction
of transcript expression is made from a neural net model:
https://github.com/FunctionLab/ExPecto.

Bio-NLP Textual Relationship Extraction

Using existing open-source tools to tag bioentities (small molecules, genes, proteins, cell types,
organisms, diseases, etc.), OpenCog natural language processing tools will extract relations
among them from arbitrary plain text or pdf documents and output an AtomSpace representation
of these relationships. AtomSpace knowledge bases will be updated with new information. These
knowledge bases are useful for data mining and inference processes related to user
investigations.

Transfer Learning from Model Organism Knowledge Bases

One of the major challenges in genetics is to predict the functions of genes and proteins and to
identify their regulatory pathways. Data mining and several machine learning techniques have
been successfully applied to transfer gene annotation information between organisms.

Cell-level Hypothesis Generation from ML Results Given AtomSpace Knowledge Base
and Genome-scale Cell-Metabolism Model

Given a feature list of variants, transcript expression levels, and/or protein abundances; a cell
type and other context from experimental results data; and an AtomSpace containing background
knowledge from public or proprietary customer sources, causal hypotheses are generated to
explain the observed phenotypes associated with experimental data.

53

https://github.com/DEIB-GECO/GMQL
https://github.com/bulik/ldsc
https://github.com/FunctionLab/ExPecto

Tissue-level Hypothesis Generation from ML Results Given AtomSpace Knowledge
Base and Cell Ensemble Model Including Extracellular Environment

Knowledge-base contents and inference rule bases are combined with extracellular and
tissue-level context to allow us to generate meaningful hypothesis-driven inferences based on
clinical and laboratory parameters of experimental sample subjects.

4.2.4 Probabilistic Graphical Models and Serious Games

Deep-reinforcement-learning methods have lately become some of the most popular algorithms
in AI, but for numerous reasons they have so far not found serious application outside of a
gaming environment. In our graphical model research, we are exploring ways to use networks to
bring them out into practical usage; for example, to play the “healthcare game” to find the best
treatment for a patient with a complicated history or to work with practically any real-world data.

The way we handle observational data is a bridge from game worlds, where we know the
rules, to the real world, where we have to tease out the rules through science and epidemiological
techniques.

In our graphical model research, we seek to translate real-world processes into Markov
decision processes (MDPs), which represent the change in real-world states caused by different
treatments. Once expressed in this form, they can be optimized by reinforcement-learning AI and
other techniques. However, in order to express data in this form, attention should be paid to how
to tease causal relationships out of observational data. To do this we combine epidemiological
concepts (such as the “do” function of Pearl, instrumental variables, and the potential outcomes
framework) with recent developments in the new accuracy of deep neural networks.

We are currently applying these methods to a curated dataset regarding the treatments of
political campaigns, and intend to next use them to address healthcare data, including data from
health insurance claims. However, while these are our current foci of experimentation, the scope
of potential applications is extremely broad.

5. SingularityNET AI R&D Overview

For SingularityNET to achieve its goals of fostering superior AI applications across vertical
markets and seeding powerful and benevolent artificial general intelligence, it must be more than
just an outstanding marketplace in which narrow AI algorithms and services are matched with
customers. The network must contain a certain percentage of AI agents that carry out abstract,
general-purpose AI tasks. These lower-level AI agents can then be subcontracted by other AI
agents carrying out more application-specific tasks and providing end-user solutions—and can
learn rules more general than any one specific application area.

Toward this end, SingularityNET Foundation’s AI team has been pursuing a variety of AI
R&D projects, in many cases continuing and scaling up AI R&D that was already being pursued

54

in the open-source community or in universities. This section describes some of the most
important of such efforts. The fruits of this R&D are expected to launch on SingularityNET
during 2019 and 2020. As time goes on, we expect community contributions with increased
intelligence and applicability, which will take most of the weight of development off the
Foundation.

This body of technical and scientific effort is unique in several ways. Nowhere else on the
planet, outside of a handful of large technology companies, is a comparable scale of deep AI
research being conducted in a manner compatible with scalable software engineering. Moreover,
while the big tech companies are focused on deep-neural-net technology that exploits their large
proprietary data stores, SingularityNET’s R&D is pursuing AI within a commons-based
cognitive architecture.

The AI services born of this R&D work will provide direct value to sophisticated
SingularityNET customers who know how to use such services directly within their software
platforms, and they will provide indirect value as subcontractors to other AI agents running on
the SingularityNET platform. Such AI agents may lack more advanced functionalities and would
need to submit queries to the AI agents created by the SingularityNET Foundation AI team to
enhance their capabilities.

5.1 Introduction

The SingularityNET Foundation AI research programme reflects the combination and
intersection of multiple previously existing research initiatives, including the following:

● The OpenCog AGI project, founded by SingularityNET CEO and cofounder Dr. Ben
Goertzel and colleagues in 2008 based on earlier work within the AI software firm
Novamente LLC. A substantial portion of the OpenCog development team has been
brought into the SingularityNET team to optimally develop and roll out OpenCog-based
intelligence in a manner fully integrated with the SingularityNET platform. For general
background on OpenCog, we recommend reading the CogPrime Overview Paper or the
books Engineering General Intelligence Vol. 1 and Engineering General Intelligence Vol.
2.

● A related but separate research program originated in Dr. Alexey Potapov's lab at the
ITMO University in St. Petersburg. It combines deep neural networks, probabilistic
programming, and evolutionary learning within a common probabilistic learning-based
theory of AGI. Dr. Potapov is now leading a significant team within the SingularityNET
AI R&D group.

● Research on integrating perception, movement, language, emotional understanding, and
expression for controlling robots and other AI characters that is being conducted by a
collaboration of the AI team at Hanson Robotics and the SingularityNET team.

● Research on fusing deep neural networks with mathematical linguistics for computational
language understanding and generation carried out in Sergey Shyalapin's lab in St.

55

https://opencog.org/
https://wiki.opencog.org/w/CogPrime_Overview
https://www.amazon.com/Engineering-General-Intelligence-Part-Cognitive/dp/9462390266
https://www.amazon.com/Engineering-General-Intelligence-Part-Architecture/dp/9462390290
https://www.amazon.com/Engineering-General-Intelligence-Part-Architecture/dp/9462390290
http://en.ifmo.ru/en/
https://www.hansonrobotics.com/

Petersburg and now integrated with OpenCog-based work on probabilistic symbolic
methods for language learning.

● A body of research on AI for analyzing and guiding complex systems dynamics pursued
in a loose collaboration by Dr. Debbie Duong and Dr. Ben Goertzel since they worked
together on government-funded research in Washington D.C. in 2002–2007, and also in a
collaboration between Dr. Goertzel and the Global Brain Institute at the Free University
of Brussels beginning in 2001 (and represented on the SingularityNET team by Dr. Kabir
Veitas from the Global Brain Institute).

● Research on AI that integrates evolutionary learning with probabilistic reasoning and
statistical learning in order to analyze biological data and other complex scientific data,
that was conducted in the Hong Kong bioinformatics firm Mozi Health (now a close
partner of SingularityNET).

Most of the research areas summarized here have been covered in posts on the SingularityNET
research blog; the treatment here provides a more concise summary. The team hopes to provide
high-quality algorithms and approaches beyond the deep neural nets that currently dominate the
big tech companies’ AI.

The work of the SingularityNET Foundation AI R&D team is rigorously grounded in
foundational principles of AI theory and cognitive science, including the OpenCog cognitive
architecture and mathematical theories of learning and reasoning. By following these underlying
principles in a carefully planned way, the team can deliver AI services that provide practical
value and at the same time push toward the longer-term goal of benevolent artificial general
intelligence.
For simplicity, we have divided the research initiatives into two categories: (i)AI architectures
and algorithms and (ii)measuring, modeling, and extending the SingularityNET network

However, the work being done in these two categories overlaps on both the conceptual and
code levels.

5.2 AI Architectures and Algorithms

5.2.1 Symbolic Learning and Reasoning

Dr. Nil Geisweiller is leading a team carrying out advanced R&D on symbolic learning and
reasoning in the OpenCog framework. The high-level motivation and conceptual background of
this work is covered in research blog posts such as Introspective Reasoning Within the OpenCog
Framework and Enabling Cognitive Visual Question Answering.

This work involves integrating multiple AI tools, such as the probabilistic logic networks
(PLN) logic engine, the MOSES automated program learning engine, the OpenCog pattern
miner, and the ECAN attention allocation system, into a common framework based on
OpenCog’s unified rule engine (URE).

56

https://sites.google.com/site/gbialternative1/
https://blog.singularitynet.io/research/home
https://blog.singularitynet.io/research/home
https://singularitynet.io/team/
https://blog.singularitynet.io/introspective-reasoning-within-the-opencog-framework-1bc7e182827
https://blog.singularitynet.io/introspective-reasoning-within-the-opencog-framework-1bc7e182827
https://blog.singularitynet.io/enabling-cognitive-visual-question-answering-a93febd454a7
https://wiki.opencog.org/w/Probabilistic_logic_networks
https://wiki.opencog.org/w/Meta-Optimizing_Semantic_Evolutionary_Search
https://wiki.opencog.org/w/Pattern_miner
https://wiki.opencog.org/w/Pattern_miner
https://wiki.opencog.org/w/Pattern_miner
https://wiki.opencog.org/w/Attention_Allocation
https://wiki.opencog.org/w/Unified_rule_engine

Conceptually, the key theme is leveraging reflective meta-learning and cognitive synergy
(win–win interoperation between different cognitive algorithms) to achieve higher levels of
generalization and abstraction in machine learning/reasoning.

5.2.1.1 Scalable, General Probabilistic Logic

One essential initiative in this area pertains to probabilistic logical reasoning. Logical inference
has been a central pursuit within the AI field since the 1960s, and modern computing resources,
data sources, and theoretical advances make it feasible to integrate logical inference with
probabilistic and statistical inference in an intricate manner.

The ability to relate problems (theorems) to their solutions (proofs) in a transparent manner is
particularly suited to complex tasks such as bringing heterogeneous processes to inter-operate
with each other,� providing a link between machine understanding and human understanding,
and enabling deep levels of introspection and meta-learning.

The “generalization” part of artificial general intelligence is something that logical systems
are especially good at, more so than deep neural networks or other forms of AI that originate in
pattern-analysis and “curve-fitting.”

Although modern reasoning systems are quite sophisticated, they do have common
deficiencies. They tend to be crisp (in other words, they do not handle uncertain knowledge and
reasoning, or may do so in restrictive or inefficient manners) and generally inefficient, due to the
inherent combinatorial explosion of building inferences.

We have designed probabilistic logic networks (PLN) in conjunction with the OpenCog
framework to overcome (or at least mitigate) these deficiencies.

For instance, uncertainty is built into the logic in a mathematically rigorous way, allowing a
PLN reasoner to ultimately become a substitute for both a logician and a statistician.
Furthermore, by recursively applying its ability to handle uncertainty in a rigorous and general
manner, PLN can express and solve problems about its own efficiency (also called “inference
control” problems).

Lastly, the engine that PLN is built on top of, the unified rule engine of the OpenCog
framework, has been designed with such inference control knowledge to guide its reasoning
processes.

These aspects together allow for the creation of a self-improvement loop ultimately leading
to more and more efficient reasoning.

The challenges in realizing this vision are significant. For instance, the transparency brought
by reasoning has its computational overheads. Additionally, seeding the system with an initial
efficient control policy that enables reasoning about its own efficiency is difficult in itself.
Lastly, the more knowledge about inference control the system accumulates, the more costly the
control decisions may become.

The OpenCog architecture addresses these challenges by providing a collection of
components, often universal by nature but featuring very different sets of strengths and
weaknesses, designed to be combined synergistically – a principle called Cognitive Synergy.

Some of these components, in addition to PLN, are

57

● MOSES, which stands for meta-optimizing semantic evolutionary search, an evolutionary
program learner with some built-in capacities to learn how to search;

● Pattern miner, a frequent subgraph miner operating on the AtomSpace, OpenCog's

generalized hypergraph data storage; and

● ECAN, short for economic attention networks, a resource-allocation system that

dynamically estimates the importance of knowledge and processes in the system and
assigns credits accordingly.

Our current research pertains to each of these components, and how to combine them for both
practical goals and theoretical understanding.

5.2.1.2 Integration of Probabilistic Evolutionary Program Learning and Inference

MOSES is an evolutionary learning algorithm that extends John Koza's “genetic programming”
learning framework in several important ways.

Genetic programming seeks to automatically learn computer programs by emulating the
process of evolution through natural selection. In genetic programming, a population of
programs is generated and evaluated on a fitness function. The unfit programs are discarded. The
fittest programs survive and are combined and mutated to form a new generation. The new
generation of programs then undergoes the same process of evaluation, selection, and so on.

MOSES extends this paradigm by

● considering a collection of subpopulations of programs, each focused on searching a
different region of “program space”;

● placing programs into a novel hierarchical “elegant normal form” which allows them to
be analyzed more effectively; and

● supplementing mutation and combination with a probabilistic model of which programs
will be fit and using this probabilistic model to generate new programs.

This has been shown to provide superior learning performance in a variety of cases. Applications
have included genomic data analytics, financial predictions from heterogeneous data sources,
and control of virtual agents in game worlds. It also yields a sophisticated framework that can
require significant customization for each new application area.

Most of MOSES’s computation is not explicitly framed as reasoning. This choice provides
more efficiency but less flexibility. Fitness functions may be run in parallel with extreme
efficiency, evaluating millions of candidates in seconds. However, a great deal of transparency is
lost in the process. For instance, as only the best-candidate programs are kept for subsequent
analysis, the bulk of the computation is discarded.

The key, however, is that some of MOSES’s computation is framed as reasoning. It reasons
on the probability that exploring a specific region of the search space is fruitful. These decisions
may be infrequent, compared to the total volume of computation, but they are critical to the

58

https://wiki.opencog.org/w/Meta-Optimizing_Semantic_Evolutionary_Search
https://wiki.opencog.org/w/Pattern_miner
https://wiki.opencog.org/w/Attention_Allocation
http://www.genetic-programming.com/johnkoza.html

success of the search. These anchor points constitute the bridges between efficient forms of
computation (which are opaque) and the more holistic forms of computation (which are
transparent), and they are the opening that allows the benefits of cognitive synergy to flow in.

Fusing MOSES with PLN and other forms of reasoning and learning has been part of the
plan since MOSES was created in 2005–2007. It is expected that this fusion will allow the
algorithm to scale up to learn much more complex programs than is currently possible, thus
progressing toward an AGI and also enabling a great variety of additional applications.

In order to enable MOSES and PLN to work together effectively, we are now porting
MOSES to the unified rule engine, with the critical decisions explicitly framed as reasoning and
the rest remaining encapsulated as efficient, non-transparent computation. The existing
mechanisms for inference control and meta-learning, currently present in the unified rule engine
for use with PLN, will then become available to MOSES.

5.2.1.3 Pattern Mining in Logical Hypergraphs

The OpenCog pattern miner extends the existing tools for mining frequent and surprising
patterns in databases, providing a uniquely powerful engine for mining frequent and surprising
patterns in complex hypergraphs.

The hypergraph is the data structure used within OpenCog to represent all forms of relevant
knowledge in a unified way. For an exposition of why hypergraphs are valuable as a universal AI
representation framework, please read this blog post.

The pattern miner has recently been re-implemented on top of the unified rule engine for
greater scalability and configurability. It shines when dealing with large amounts of data that are
complexly and heterogeneously structured: natural language data, multi-omics biological data,
traffic data, financial markets data, and more. In these areas, a hypergraph with logical semantics
is more effective than simpler representations like relational databases or feature vectors.

One of the deepest applications of the pattern miner is to optimize AI algorithms such as
PLN. It does this by looking for patterns in the choices in an AI algorithm that consistently lead
to better outcomes.

For instance, given a trace of all decisions left by the unified rule engine during its execution
of a run of PLN reasoning, one can apply pattern mining to understand the context, the problem
to solve, the inference so far constructed, and the axioms of the system. The pattern miner then
constructs inferences by applying rules and evaluates whether or not a given inference is on its
way to solve the problem.

The pattern miner extracts surprisingly frequent hypergraph patterns from records of
inference engine activity. One can already use these patterns to produce important inference
control rules that speed up future inferences. Our recent work has shown that this can already
serve as a start toward the complicated process of acquiring efficient reasoning.

5.2.1.4 Guiding Inference with Nonlinear Attention Allocation

In an AI system containing a large amount of data and/or a large number of cognitive processes,
the allocation of attention becomes critical. OpenCog handles this via a system called Economic
Attention Allocation (ECAN), which allocates tokens of “artificial mone”’ between the nodes

59

https://wiki.opencog.org/w/Pattern_miner
https://blog.opencog.org/2013/03/24/why-hypergraphs/

and links in its knowledge hypergraph that represent units of short-term and long-term
importance to the system and its overall goals.

In collaboration with the Hanson AI team, SingularityNET has put significant effort into
making the ECAN framework operate on large AtomSpaces and verifying that the way it directs
attention is cognitively sensible and pragmatically effective.

ECAN has many practical uses today. It directs OpenCog’s attention to allow OpenCog to
generate natural language dialogue for the Sophia robot. When MOSES learns models of
biological datasets and imports them into AtomSpaces, PLN can analyze them there. ECAN is
essential in directing PLN’s attention during this process. It will also be critical for the general
guidance of the URE’s rule applications.

Learning good inference control rules is very important, but even with these, controlling
reasoning can be complicated because combining rules optimally takes a lot of computation. If
the unified rule engine had too many control rules and had to weight every possible relevant rule
to come up with the best decision, it would pause for an indefinite amount of time to deliberate,
stalling the system.

Happily, we can also use reasoning to improve ECAN itself. ECAN uses a hypergraph of
Hebbian links expressing how attention should be spread across data and processes, and this
hypergraph is amenable to reasoning. Thus all components that can produce these Hebbian rules
can be used to improve ECAN. For instance, pattern mining can be used to discover basic
Hebbian rules and PLN can be used to discover finer ones, and so can MOSES.

5.2.2 Integrative Genomics as a Case Study for Integrative AI

As biology becomes an information science and information science becomes dominated by
machine learning and other AI methods, it stands to reason that biology is becoming dominated
by AI. To grapple with the systemic nature of disease and aging, it is necessary to do simulation
modeling, data analysis, and machine reasoning regarding the multiple body subsystems across
numerous datasets.

This emerging paradigm of medicine has been termed “P4 medicine that is predictive,
preventive, personalized, and participatory” by systems biology godfather Leroy Hood.
SingularityNET CEO and cofounder Dr. Ben Goertzel was an early practitioner of this view;
since 2000 he has applied machine learning and other AI technologies to longevity and
genomics, including in collaborative work with the CDC, NIH, and various universities.

In this spirit, the SingularityNET AI team has chosen biomedical data analytics—in
particular the analysis of genomics data regarding longevity and age-associated diseases—as an
initial testing ground for integrating multiple AI paradigms within the OpenCog framework.

MOSES is used to find patterns in genomic datasets. The small programs representing these
patterns are then imported into the AtomSpace hypergraph representation. Next, the PLN logic
engine is used to draw conclusions by combining the patterns with knowledge obtained from
biological ontologies like the Gene Ontology project, MSigDB, etc. and with knowledge
extracted from biological texts using OpenCog natural language processing technology.

For example, when applied to genomic data obtained from exceptionally long-lived people,
MOSES can tell us what genes or what combinations of genes tend to have the most significant
influence on these peoples’ long lives. PLN and reasoning about these MOSES models, together

60

https://www.hansonrobotics.com/ai-team/
https://en.wikipedia.org/wiki/Sophia_(robot)
http://p4mi.org/p4-medicine
http://p4mi.org/leroy-hood-md-phd

with other knowledge, can give us the hypotheses about how these genes impact aging. This can
be a powerful tool for suggesting new experiments to run and for suggesting diagnostics to
identify a disease state or predict future disease or longevity. It can also be applied to discover
targets for either conventional drug therapy or gene therapies such as CRISPR.

In 2019, the SingularityNET bio-AI team will release a series of publications describing
novel discoveries about aging and disease that have been uncovered using these methods during
its 2018 research. However, these exercises in AI refinement and prototyping have
importance going beyond these particular results and this particular subdomain. These methods
will serve as part of the AI core of the Singularity Healthtech Studio project, and they also have
general applicability beyond health-tech.

For instance, in financial services, there is a demonstrated value to applying the MOSES
learning engine to combine price, volume, global macro, company accounting, and news
sentiment data into combinational predictive models. Financial text analysis software is
relatively mature, and an extensive amount of structured data pertaining to listed companies and
their internal structures and external involvements is available. The methodology refined by the
SingularityNET research team in the context of genomics AI will be adapted to play a crucial
role in the Singularity Studio fintech module.

5.2.3 Neural-Symbolic Integration for Semantic Computer Vision

Neural networks have been part of the AI field since the late 1940s, but their popularity has
waxed and waned over the decades. In recent years, multilayer hierarchical neural nets (better
known as deep neural nets) have become extraordinarily popular due to their successes in
analyzing various sorts of data, especially visual and auditory data.

A few AI researchers believe this particular tool can be refined into a universal practical AI
solution and even into an architecture for artificial general intelligence. However, most AI
practitioners realize that different courses require different horses. Deep neural nets are the best
solution for some problems, but other problems (in particular those requiring transparent,
symbolic reasoning) call for other AI techniques.

Symbolic AI approaches, such as logic engines, and program learning systems (which have
been under development since the 1960s and 1980s, respectively) have historically demonstrated
different strengths than neural networks. They have been better at generalization and abstraction,
at planning processes (either in the physical world or in the domains of discourse and science),
and at formulating novel high-level hypotheses.

For example, although computer vision tasks can theoretically be formulated as tasks of
logical reasoning starting at the pixel level, such reasoning would be hopelessly inefficient.
Neural nets shine when applied to computer vision tasks. By contrast, it is hard to imagine neural
networks alone forming automated theorem provers.

As we aim for a more flexible, broader intelligence, the need for both symbolic and neural
components becomes clearer. Ultimately, the development of artificial general intelligence will
most likely require a hybrid approach, and there are almost no purely symbolic or purely
emergent (subsymbolic, neural) cognitive architectures. Most architectures have elements of
both, although the symbolic/subsymbolic gap is far from being fully bridged.

61

The field of “neural-symbolic AI” explores methodologies for combining neural network and
symbolic approaches into unified AI systems that manifest the strengths of both approaches.
Recent mathematical advances in AI theory using tools such as algorithmic information theory
and probabilistic programming provide a coherent conceptual and formal framework in which to
pursue this integration. SingularityNET AI scientist Dr. Alexey Potapov has carried out a
significant body of both theoretical and practical research in this direction. Click here to see
some of the relevant output of his lab at ITMO University in St. Petersburg before he joined
SingularityNET in 2018.

The necessity for deep neuro-symbolic integration can be seen in the example of the
image-understanding (or semantic-vision) problem. On the one hand, vision cannot be
considered as a peripheral module that merely forms an input to the symbolic AI system. On the
other hand, even in the vision domain, which is most favorable for deep learning, purely neural
systems are insufficient to capture compositional structure and to perform reasoning (especially
if transparent, interpretable results are desirable).

It should also be noted that even image classification systems can benefit from external
knowledge graphs. Consider the problem of learning visual concepts and their relations: it might
be necessary to both integrate neural networks with symbolic models and modify traditional
neural network formalisms. Tasks such as visual question-answering (e.g., asking an AI, “What
is the cat in the photo wearing?”) require more top-down compositional reasoning integrated into
the bottom-up image processing.

5.2.3.1 Visual Reasoning

Reasoning about visual scenes is challenging because it requires subsymbolic inductive
information processing and symbolic deductive inference.

For example, suppose you want an AI to answer a question like “Are these two chairs
similar?” This visual question-answering (VQA) requires top-down control of image analysis.
Although this control can be implemented in the form of neural networks for simple questions
using their embeddings, some VQA benchmarks have shown that this approach is insufficient
and more compositional control mechanisms are required.

More-complex questions like “What size is the cylinder that is left of the brown metal thing
that is left of the big sphere?” are difficult to stuff in an embedding vector of a fixed size. It is
difficult to imagine that bottom-up processing can provide ready answers to such questions.

Tasks that involve visual dialogues require a sort of short-term memory. Neural models can
memorize how to conduct straightforward dialogues, but for dialogues with more complex
compositional structure, both symbolic inference and memory are much more suitable.

Another issue with contemporary deep neural networks (DNN) solutions is that different
models are developed and trained for different tasks and even different benchmarks of the same
task—such is the case for CLEVR and COCO VQA datasets.

Advancing visual reasoning has many practical applications, including video analytics,
robotics, semantic image and video retrieval, augmented reality, blind-assistance systems, and
more.

Due to all of these factors, the SingularityNET team approaches the problem of semantic
vision and visual reasoning with the lens of cognitive architecture. Cognitive architectures are

62

https://blog.singularitynet.io/@alexey_67767
https://www.researchgate.net/profile/Alexey_Potapov4

integrative systems with working and long-term memory, knowledge representation, and
reasoning engines intended for solving a wide range of tasks.

More specifically, we utilize the OpenCog cognitive architecture with its probabilistic logic
network to perform deductive inference and AtomSpace to maintain the knowledge base. In the
case of VQA, link grammar and RelEx2Logic modules of OpenCog are being used now to
convert natural language questions to PLN queries. Neural network modules that can be executed
by PLN at runtime are being developed. The primary research interest is in studying and
overcoming the limitations of both OpenCog and DNNs when they are applied jointly to
different visual reasoning tasks.

5.2.3.2 Concept and Representation Learning

Visual concept learning is the primary component of all semantic vision tasks that are tightly
connected with representation learning. Visual concepts are learned as classifiers (discriminative
models) in many models developed for solving different reasoning tasks.

These discriminative models are specialized for particular datasets, and they can be learned
with enough training data. For real-world visual concepts, they are usually pretrained on labeled
datasets such as ImageNet and Visual Genome. However, these datasets do not cover the whole
variety of the visual world, and the tasks of unsupervised and one-shot learning are of
considerable interest for general semantic vision.

Learning disentangled and semantically decomposed representations with little or no
supervision is essential to solving these tasks. This is usually carried out with generative models
like InfoGANs or beta-VAE. However, representations learned by generative models are much
less potent than those learned with discriminative models. Getting the best of both worlds is
necessary.

For instance, to learn semantic visual concepts, some degree of supervision is required.
However, learning the relations between such concepts (together with both rich and disentangled
representations) poses additional challenges because classes of objects are not mutually
exclusive (dogs and llamas are both mammals, but they are not both pets), objects can be
characterized with a variable number of attributes (a llama can be both brown and woolly), and
so on.

Our research aims to solve these difficulties and to integrate corresponding generative and
discriminative models in visual reasoning pipelines. This can be of help in training models with
less supervision and transferring them to new datasets in not only different visual reasoning tasks
but also other areas.

Suppose you want to identify a person across several images from different cameras with
views that do not overlap. A model learned in one dataset will perform poorly when applied to
another. In practice these models are pretrained on a labeled dataset and should be deployed onto
new camera sets, for which labeling is very expensive or impossible. Combining discriminative
and generative models with the decomposition of person-embedding and nuisance variables can
help to mitigate this problem. The same problem—a lack of labeled datasets and difficulty of
unsupervised transfer learning—is also typical of biomedical and many other applications, and
the same solution should apply.

63

https://opencog.org/
http://www.image-net.org/
https://visualgenome.org/

5.2.3.3 Generalization and Invariance in Deep Neural Networks

Learning visual concepts from few examples requires strong generalization. The system should
identify the key features or latent variables that are invariant and separate them from variable
nuisance factors. Unfortunately, generative models by themselves are not enough to solve this
problem because neural networks are good at approximating functions inside the training set but
not at extrapolating them beyond it.

For example, even if a decoder network is explicitly trained to reconstruct rotated images in a
certain range of rotation angles, it will fail outside that range.

There is interest in achieving a general solution to the problem of generalization.
Generalizing about spatial transformations can be hard-coded with the use of spatial
transformers, but the more interesting problem is to achieve invariance to unknown a priori
transformations.

Although the problem of strong generalization is external to the vision domain, we do look at
the possibility of improving generalization capabilities of neural networks with more expressive
formalisms.

For instance, we researched generative capsule networks (CapsNets) and hypernetworks
(HyperNets), showing they performed better in generalizing certain forms of transformations. In
particular, we study the possibility of learning disentangled representations with HyperNets, in
which different types of factors of variation appear in the ordinary latent code and control
variables.

In addition to improving learning performance in general, such extensions can have different
specific applications. For example, HyperNets can be used instead of spatial transformers when
the model of transformation is unknown. They can also be used to invert (i.e., to construct a
decoder for) Faster R-CNN features or to design an image-matching system.

5.2.3.4 Frameworks for Neuro-symbolic Integration

Existing modular networks do combine these networks. However, they do so in a hard-coded,
task-specific way where each network has an assigned task, and they include execution engines
implemented in certain deep learning frameworks (such as Tensorflow or PyTorch). This makes
these models automatically end-to-end differentiable, but at the cost of generality.

It seems that it would be difficult to implement the whole cognitive architecture within such
frameworks, and although neuro-cognitive architectures are being developed, they are much less
mature than existing hybrid architectures.

In turn, neuro-symbolic integration within hybrid architectures poses its own challenges. In
particular, visual reasoning with OpenCog’s PLN supposes that there is a sequence of symbolic
inference steps between deep neural networks grounding visual concepts and the final answer. In
order to make these networks trainable, error back-propagation through inference traces should
be available, or these traces should be “compiled” into Tensorflow, PyTorch, and other
deep-learning frameworks.

The SingularityNET team is looking at different possibilities to choose the most general and
efficient way forward.

64

https://blog.singularitynet.io/singularitynets-ai-team-experiments-with-generative-capsule-networks-c48ebc3fb2e1
https://blog.singularitynet.io/just-deep-is-too-flat-b3813e2242f1
https://blog.singularitynet.io/inverting-discriminative-representations-with-hypernets-b259dc64530c
https://www.tensorflow.org/
https://pytorch.org/

Furthermore, generative neuro-symbolic models might be even more challenging. Current
examples of such models include variational autoencoders combined with Bayesian networks
and trained with the use of a joint variational objective. However, learning the structure of the
Bayesian network requires different inference algorithms.

Probabilistic programming is a general way to define generative models. However, it either
uses sampling-based inference, which does not scale well to deep neural networks, or gradient
descent for parameter estimation. A framework for the hybrid inference is necessary. In our
work, we investigate guiding sampling in probabilistic programming by symbolic deduction and
combining the sampling with gradient-based and evolutionary learning in a unified framework.

We believe deep neuro-symbolic integration is essential for scaling visual reasoning models
to real-world problems.

Domain knowledge could then be incorporated into the models. For example, one can
imagine a VQA or video analytics system in a boutique that uses a product catalog with
categories of products (handbags, scarves, and so on) to guide the inference. Or imagine an AI
tour guide of Rome that analyzes images from a user’s smartphone and supports visual
dialogues, making effective use of symbolic knowledge about sights.

Of course, the desirable unified framework will have many more applications not only in
visual reasoning but also in natural language processing and other tasks requiring simultaneous
structure identification and parameter optimization.The most basic example is learning word
embeddings simultaneously with word sense induction and word clustering into categories.

5.2.4 Unsupervised Language Learning

Making AI systems richly understand human language is critical for a wide variety of practical
applications and for the quest to create AGI systems that can learn from and interact with
humans and comprehend our culture and values.

For most of its history, the academic field of linguistics focused on making careful
formalizations of language structure (the simplest case of which is the sentence diagrams many
of us learned to draw in grammar school), but since the advent of the internet there has been a
greater volume of work on “statistical linguistics,” the use of statistical and machine learning
tools to find patterns in large volumes of textual data.

There has been a particular focus in the computational linguistics field on “supervised
learning” of linguistic information, which means applying machine learning algorithms to
specially prepared linguistic resources, such as collections of thousands of sentences that have
been provided with sentence diagrams via the labor of human graduate students. However, the
limitations of this methodology are now being recognized, and more attention is being paid to
“unsupervised” methods that learn how to handle natural language by merely looking at large
volumes of raw text.

There are many critical applications in this domain, but the ones we have focused on in
SingularityNET, and OpenCog before, are the following:

● Language comprehension. Translating information conveyed in natural language into
structured knowledge that can be manipulated by AI reasoning systems (enabling
applications such as question-answering and knowledge-discovery)

65

● Language generation. Creating systems that allow AIs to express their internal
knowledge and data in human language

● Dialogue. Creating systems that combine language comprehension, generation, and
reasoning to carry out purposeful interactive dialogue with people

Toward these ends, we have been pursuing a project in the area of unsupervised language
learning (ULL) and specifically unsupervised grammar learning: creating a software that can
ingest a large body of text in a specific language, such as English or Russian, and then output a
list of the grammatical rules of the language used in the text.

This software is only a part of what is needed to create powerful language comprehension,
generation, and dialogue systems, but it is a critical part nevertheless.

Neither traditional linguistics nor supervised machine learning approaches have been able to
comprehend the grammar of natural human languages well enough to support general-purpose
natural language applications such as chat systems that can dialogue informally about general
topics or scientist-assistant systems that can summarize the critical contents of research papers.
Radical new advances are needed to achieve these goals, and we are well on the road to
achieving them.

5.2.4.1 Approach to Unsupervised Grammar Learning

Our approach to grammar induction is novel and combines multiple algorithms and multiple AI
paradigms. Early results applied using a simple version of the methodology are discussed in
Bridging the Language Divide.

The critical step is to create a weighted link between each word in a sentence. In the simplest
case, these weights can reflect mutual information values between the words, calculated by
looking at all co-occurrences of these words across a training corpus. If words have been
assigned category labels, then the weights can reflect mutual information values between
categories that are calculated by looking at all co-occurrences of words in these categories across
a training corpus.

Alternately, one can use a deep neural net (or other predictive language model) trained on a
corpus to calculate the information value of the link between two word instances in a way that
takes into account the context of the sentence and of the overall discourse or document in which
the sentence occurs. There is an excellent variety of neural language modeling tools available in
the recent computational linguistics literature, and our team is experimenting to see which tool
provides the most reliable performance in this task.

First, the system calculates weighted links between the word pairs in a sentence. A process
called maximum-weight spanning tree (MST) parsing is then used to find a graph that fulfills
two conditions: it matches the sentence, and it is a valid planar graph according to Link
Grammar theory. Currently, we are using an MST parser implemented in Scheme for use with
the OpenCog AtomSpace, and the relevant linguistic nodes and links are represented as
OpenCog Atoms.

66

https://blog.singularitynet.io/bridging-the-language-divide-e2be43f3a37a

We may create categories comprising words with similar properties, where some of the
properties are calculated based on the MST parses. Examples of properties are “being linked to
the left to the word ‘walk’ in a lot of MST parses” and being linked to the left to the category C45
in a lot of MST parses.”

The results of categorization may be fed back into the link-weight–determination process to
be used as input for another round of MST parsing.

Surprisingly frequent patterns may be identified in the corpus of trees obtained by MST
parsing in this way. These patterns constitute the grammar rules learned by the algorithm. Some
of the categories learned may be more semantic and some more purely syntactic, meaning that
the rules learned can also span from purely grammatical to syntactico-semantic.

This approach can be applied to ordinary grammatical English, but it can also be applied to
informal English such as tweets or text messages. Applying it to a corpus of specialized English
such as biomedical research abstracts yields a specialized grammar depicting the usage of
language in these sorts of texts.

For languages with complex morphology, such as Amharic, in which individual words can
have multiple prefixes and suffixes and even infixes, the same algorithmic logic must be applied
on the character level as well as on the word level.

5.2.4.2 Stochastic Language Generation

The above learning algorithm builds a set of Atoms in the OpenCog AtomSpace. These Atoms
form a probabilistic model of the syntactic structure (and to a limited extent the semantic
structure) of the input corpus. This probabilistic model may be used to generate language with
the same structure.

In the most straightforward approach, sentences may be generated relatively directly from
this probabilistic model. This could be considered a form of “stochastic language generation,”
which produces sentences that are coherent, sensible, and grammatical locally but lack a high
level of semantic meaning once they go on long enough. In other words, they can generate a few
sentences, but not a meaningful longer document.

Stochastic language generation can also be used to answer questions if one supplies a
sentence fragment and allows the stochastic algorithm to complete the fragment. An example of
such a sentence fragment is “The best thing about New York is ___________.”

A more exciting and sophisticated approach is to find sentences that fit the probabilistic
model and also satisfy an additional semantic constraint. This generates sentences that are
linguistically fluid and syntactically correct and that also represent a specified chunk of semantic
content.

5.2.5 Semi-supervised Learning of Mappings from Language to Logic

Syntactic parsing of natural language sentences, as pursued in our Unsupervised Language
Learning (ULL) research project, is only part of the task of translating from unstructured natural
language to a structured logical representation. It gets at a certain level of semantics but fails to
reach the level of more abstract semantics such as quantifiers, comparatives, multi-argument
relationships, and so forth.

67

A related research project focuses on subsequent processing, mapping syntactic parses into
sets of semantic logic expressions. This is a problem that mainstream computational linguistics
has barely addressed at all, but it is critical for connecting symbolic inference engines (like
OpenCog’s probabilistic logic networks) to natural language data or dialogue interfaces.

During the last ten years, there have been multiple efforts within the OpenCog project to
extract semantic information from natural language. This would allow OpenCog to reason on the
information and build a knowledge base of the world—such as relex, relex2frame, and
relex2logic. Although these efforts provided insights into the feasibility of different approaches,
all of them had a common weakness: they were rule-based. These rules had to be written
manually, without any automated learning.

This meant that they could handle only sentences with simple linguistic structures, were
restricted to English, and couldn’t scale to more complex sentences without significant effort to
update multiple rules. It also meant that choosing the schema to represent additional
sentence-level linguistic phenomena might break the effects of existing rules and that the rules
did not account for relations across sentences.

To go beyond these limitations, and achieve robust mapping into a knowledge representation
that is rich enough to represent most sentence-level linguistic phenomena, we have chosen to
work with the Lojban language and associated resources.

Lojban is a constructed language with a formal grammar inspired by predicate logic. Because
of its formal grammar, it provides the same syntactic unambiguity as some controlled natural
languages. However, unlike them, it is not restricted to the linguistic phenomena of a root natural
language and the limits of expressible semantics that come with it. This makes it possible to
convey diverse day-to-day semantic constructs that exist in various natural languages.

Lojban provides a natural language with a known formal grammar (like the link grammar or
induced grammar that unsupervised language learning aims to learn) and a sturdy seed for
unambiguous knowledge representation. Our Lojban project aims to answer the following
questions:

● How can we generate the rules that extract the semantic relations between concepts in a
given sentence?

● How can these rules be used to generate natural language from semantic relations?

● How can the process of learning these rules from parallel corpora of Lojban-English
pairs, involving relatively simple linguistic structures, be scaled to more complex
linguistic structures?

5.2.5.1 Rule Learning

Our system aims to learn the rules that map semantics of a natural language (English for starters)
to the OpenCog representation of Lojban. It does this using corpora of Lojban–English
translations. The Lojban sentences will be parsed into the OpenCog AtomSpace alongside the
link-grammar parse of their English translations. Then the frequent or surprising patterns in the
link-grammar parses will be mined. Next, the system will mine the Lojban parses that correspond
to the English sentences with frequent or surprising patterns. The patterns mined from these

68

https://mw.lojban.org/papri/Lojban

Lojban parses, along with patterns for the English sentences, will form the new rules that extract
the semantic information from English.

Theoretically, this approach should be able to learn rules that extract semantic information
spanning multiple sentences. For example, given the input, “I'd like to be under the sea, in an
octopus’s garden in the shade. We would be warm below the storm, in our little hideaway
beneath the waves,” this approach should be able to understand that the “little hideaway” in the
last sentence is the “octopus’s garden” in the first sentence. This requires learning corpora with
samples of entire Lojban paragraphs translated into English paragraphs. Instead of looking for
frequent or surprising patterns in sentence sets, we will look for patterns across sets of
paragraphs.

5.2.5.2 Help Generate Natural Languages

Probabilistic logic networks, semantic vision, or other processes may generate new knowledge
involving the learned rules that wasn’t sourced from the natural language pipeline. If the system
has to express this information to a human, then it has to express it in natural language.

To do so, the syntacto-semantic rules learned can be used to map the information into
natural-language-parse representations. This, in turn, will seed a stochastic natural language
generation system that will generate the sentence. The generation system will be based on formal
grammar learned by unsupervised language learning or a learned probability distribution over an
existing link-grammar dictionary.

5.2.5.3 Scaling to Complex Linguistic Structures

The Lojban–English parallel corpora are very limited in quantity, in diversity of topics, and in
the linguistic and semantic structures expressed. However, a similar (often worse) situation exists
for some natural language pairs. A recent development in unsupervised machine translation has
shown promising progress in solving this problem.

This development involves word-by-word translation based on word-embedding (for learning
a bilingual dictionary), a pretrained language-model for each language, and a process of
recursive back-translation that involves using the model of the target language to correct the
translation before the next iteration.

Taking inspiration from this approach, for the Lojban–English pair, the link-grammar
dictionary and the Lojban-to-OpenCog parser will be language models with probability
distributions learnt from corpora. For the last step, iterative corrective back-translation, the
translations could go through a rule-learning pipeline similar to the structure of the
Unsupervised-PBSMT, where the rule base plays the role of the phrase table, or runs
independently of the rule-learning pipeline that will result in a corpus that will be used later for
learning the rule base.

The first approach is an integrated approach; it makes it possible to include PLN or MOSES
in the iterative process. The advantages and disadvantages of this approach are an area of
research. The second approach is modular; it generates a parallel corpus independent of using it
to learn a rule base.

69

5.2.6 Goal-Driven Dialogue Systems

Chatbots and sophisticated conversational AI systems have become increasingly popular in
recent years, including general consumer tools like Alexa and Siri and a variety of enterprise
chatbots, customer support chatbots, and so forth. Although many of these conversational AI
systems are useful tools, they generally fail at being engaging conversation partners and often
fail at achieving their practical purposes as well, leaving the user to achieve their goals via other
means (typing, point-and-click, or talking to a human).

The technologies needed to make conversational AI agents truly useful include advances in
language comprehension, speech synthesis and analysis, probabilistic common-sense reasoning,
modeling of human emotions and mind states, among other things.

One critical shortcoming, however, is more foundational to the design of conversational
systems: the lack of a coherent cognitive architecture governing dialogue control.

“Would you like some tea?” is a simple morsel of everyday conversation. Yet it requires
complex understanding of the world: we need to know that making tea is one of the things we are
capable of doing, that other humans sometimes like to drink tea, that a teakettle and tea bags are
nearby, and many other things. We believe that an AI generating dialogue should have a model
of the self, the other, and the situation and a desire to achieve specific goals in a particular
situation relative to its model of the self and the other. If it does not, it will lack the richness and
responsiveness of human conversation and will fall short in important practical respects.

Current work on AI dialogue systems involves neural networks, rule-based approaches, and
hybrids, all with varying levels of functionality. However, these systems are mainly focused on
modeling linguistic structures available in a particular corpus and extracting the intent from what
has been said without much accounting for inputs from other sensors and without much focus on
overall cognitive modeling of the context of the dialogue.

This approach may be sufficient for building a customer service assistant or a simple
question-answering system that is restricted to a single domain and interacts with a single
individual. Restricting the breadth and depth of the conversations makes it possible to more
easily build and maintain such systems.

On the other hand, SingularityNET's conversational AI team has been primarily focused on
building a dialogue system that can handle multiple domains and group conversations, take into
account multiple sensory inputs and associated models, and be a delight for developers/authors to
build and maintain their agents on. This work is being carried out in conjunction with the Hanson
AI team at Hanson Robotics, with one key application being lifelike dialogue systems for Sophia
and the other Hanson robots.

These teams are developing the general holistic organism scripting tool (GHOST), a
framework based on OpenCog, as a solution to these challenges. Sophia and other Hanson robots
are currently testing GHOST in social robotics.

GHOST is based on OpenPsi, a framework for modeling the relationship between contexts,
actions, and the goals that are impacted by the actions and choosing an action that satisfies a
prespecified utility function. As a result, GHOST can account for multiple sensory inputs to
extract intents, make abstract inferences about the situation, and be driven by specified goals.

In a GHOST-based dialogue system, everything begins with high-level system goals and then
subgoals that may be either explicitly specified or learned by the system. Cognitive algorithms

70

https://github.com/opencog/opencog/tree/master//opencog/ghost

are then used to identify the critical features of the current context, unifying multiple inputs:
linguistic inputs and any other available sensory inputs or inferences. The system then chooses
whatever action is expected to maximize its goal achievement given the observed and inferred
context. This may be a speech action or some other type of action, such as a movement in the
case of a robot, a messaging action in the case of an online personal assistant, and so on.

In this way, the give and take of a conversation is embedded in a broader cognitive context,
where goal orientation and context analysis/inference are the foundation from which the
conversation flows.

5.2.6.1 Intent Classification

Extracting the intent of an utterance requires an understanding of the semantics of a sentence as a
function of the broader conversation. This can be done using existing tools, to a limited extent,
but the work of SingularityNET's natural language research team is expected to expand the
breadth and depth of intents that can be extracted from linguistic structures.

For amplifying the signals gleaned using natural language processing, we will explore
integrating auditory and visual inputs. This will require clear models of the physical and social
worlds of interactions.

5.2.6.2 Dialogue Representation and State Tracking

GHOST uses ECAN, OpenCog’s “economic attention allocation” framework, to determine what
to give attention to in a particular context. This allows GHOST to handle multiple domains
without developers or dialogue authors having to specify brittle conversational flows between the
domains. This capability is the subject of current active development.

Although the current GHOST system can make transitions between prespecified domains of
conversation, it is not great at tracking those transitions. How these transitions should be
represented, such that they are amenable for dialogue state tracking, is also being explored
currently.

Dialogue state tracking is closely related to action selection in OpenPsi. This is because the
dialogue system specifies a conversational flow using OpenPsi goals, the relationships defined
between them, and a utility function used during action selection.

Another avenue of current research is representing and tracking states in group conversations
and determining how they evolve through time.

5.2.6.3 Authoring/Development Interface

Developing an application using GHOST requires choosing goals, modeling the relationships
between them, and describing alternate conversation flows per domain. Learning the goal system
is not a focus at the moment, though it will become one eventually.

We plan to investigate ways to simplify the specification of the structure of conversation
flow using reinforcement learning and other machine learning approaches. Our intention is to use

71

GHOST-based conversational interfaces in developing (or teaching) either a domain-specific
GHOST-based conversational system or a general-purpose one.

5.2.7 Distributed Processing for Semantic Hypergraphs

Many of our R&D projects use OpenCog as a foundation. OpenCog has many strengths, such as
a common framework for representing knowledge used by multiple AI algorithms and a way to
run multiple AI algorithms together so that they can cooperate and share intermediate
representations.

However, in its current form, OpenCog also displays some operational weaknesses. For
instance, it can leverage distributed processing across multiple machines only in a relatively
limited way. In order to fully utilize OpenCog-based AI within the SingularityNET decentralized
framework, we need to improve OpenCog’s distributed scalability.

The critical task here is to redesign or re-implement OpenCog's AtomSpace hypergraph
knowledge store using a distributed, robust, and scalable architecture. This will improve the
ability of OpenCog to process huge volumes of data and ensure its reliability and efficiency
while providing services on SingularityNET.

OpenCog uses the AtomSpace to manipulate its knowledge base and share it among its AI
components, which access and update this base concurrently. So the AtomSpace can be seen as a
kind of shared database that AI components query to gather information and update to improve
the overall stored knowledge.

In real-world AI applications, the amount of data required to achieve interesting results tends
to be very large. This means AI components need an efficient search engine to extract relevant
information from the AtomSpace so that they can gather the necessary information in a
reasonable amount of time. This role will be fulfilled by the Distributed AtomSpace.

The Distributed AtomSpace is a new component that will replace AtomSpace (or use it under
the hood) to manipulate large OpenCog knowledge bases and provide efficient querying for AI
components working concurrently, which will allow reliable OpenCog-based SingularityNET
services.

5.2.7.1 Distributed AtomSpace x Distributed Database

Why are we creating the Distributed AtomSpace instead of just using an existing distributed
database system? It is challenging to achieve all the scalability requirements while relying only
on a distributed database management system (DBMS) because AtomSpace has at least three
requirements that no DBMS covers simultaneously:

Knowledge Representation

OpenCog's knowledge representation does not fit well in relational, key-value, or even graph
databases. We could map OpenCog’s nodes and links representation to relational tables,
key-value hashes, or graphs, but the indexing mechanisms used by the corresponding DBMS
hampers the efficiency of some of the types of queries performed by AI components. An

72

example of a query that is challenging to optimize is pattern matching; i.e., the search for
subgraphs that match a given pattern with wildcards and variables that need to be unified.

Concurrency and Data Integrity

Concurrency in OpenCog can happen on a logical level, as when components work on the same
object, or on a semantic level, as when two components work on the same knowledge-base
element (for example, a concept).

Data integrity policies, in this case, need to manage a configurable tradeoff between integrity
and performance. In other words, data integrity policies need to balance—on the one
hand—ensuring that each component see the changes the other makes to a concept and—on the
other hand—allowing each component to change concept properties without delay.

Determining the value of a concept property concurrently changed by two or more
components is not trivial. This operation (referred to as “merging” in OpenCog) may require
complex procedures with side effects (chained changes in other elements of the knowledge base)
and can differ according to the type of concept involved.

Locality of Reference

Database management systems use particular definitions of locality to implement caching and
load-balance policies. Existing systems assume that locality is temporal, spatial, or one of a few
other types.

None of these is a good fit for OpenCog’s knowledge base. Proper cache hierarchy and
load-balance policies to OpenCog must be driven by contextual locality. This type of locality
tends to keep together knowledge-base elements that are semantically related in a given context.

For example, consider two AI components C1 and C2. C1 is processing texts in natural
language, and C2 is analyzing spatial–temporal maps. Both of the AI components need to access
knowledge-base elements that represent “numbers.”

For C1, any elements representing “lexical category” that are related to a given “number” are
relevant and should be kept nearby. For C2, any “lexical category” elements are entirely
irrelevant. If C1 and C2 are running in the same knowledge base—for example, if both C1 and
C2 are helping to control a robot—the cache hierarchy policy will need to consider different
contexts to decide how elements should move in the cache hierarchy.

5.2.7.2 Extending a Distributed DBMS

The approach we are taking in our Distributed AtomSpace project is a hybrid solution that
incorporates a distributed DBMS along with other custom components that mitigate the problems
mentioned above. This is represented in the figure below:

73

Figure 14. Components of distributed AtomSpace

AI components use the same API to access a Distributed AtomSpace as they would for a regular
AtomSpace. However, a distributed DBMS (with its hierarchical cache and load balancer) is
used to provide scalability.

Pattern Index is a search engine that allows queries for pattern matching. It uses an inverted
index to provide efficient lookup. The index itself needs to be persisted, and this may or may not
be done using the same DBMS mentioned above.

The Atom DB and the AtomSpace form the cache hierarchy. The AI Component uses
patterns to define which element relations are relevant and provides this context information to
drive the caching policy.

6. Measuring, Modeling, and Extending SingularityNET

SingularityNET is a platform and framework for hosting AI algorithms and systems of multiple
types. Some live within individual SingularityNET agents, and others span multiple agents in a
distributed way.

However, the SingularityNET decentralized AI network as a whole may also be considered a
holistic AI system in its own right, in which the individual AI agents in the network are
subcomponents of an overall “society and economy of minds” that is itself a kind of coherent
mind.

74

To realize this decentralized network intelligence, we require methods for analyzing and
measuring intelligence in complex, self-organizing networks. Generic AI tools such as
OpenCog’s pattern-mining and reasoning engines can be used for this purpose, but there is also a
need for AI tools and related tools oriented explicitly toward understanding the intelligence of
networks.

There is also great potential for enhancing the intelligence and efficiency of SingularityNET
by making improvements to its underlying mechanisms of exchange and service discovery,
among other things. However, to explore such improvements effectively requires quality tools
for studying complex networks.

This aspect of R&D is expected to intensify as the network attracts a rich variety of AI agents
from various authors and as the analysis and coordination of this complex network becomes a
challenge that must be met by specific AI tools.

6.1 Symbolic Interaction–based Complex Network Simulation Modeling

In its early stages, the network of interactions among AI agents on SingularityNET will not be
excessively complex, and analyzing and regulating the network dynamics will be
straightforward. As the population of agents grows more complex, however, and the number of
agents outsourcing work to other agents in complex patterns increases, then the understanding,
regulation, and ongoing design of the network will become significant and fascinating
challenges.

Essentially the only way to understand and manage a complex network of this nature is via
simulation modeling. Toward this end, SingularityNET researcher Dr. Debbie Duong has led the
development of a simulation engine capable of modeling the complex economic and cognitive
dynamics that will occur within a mature SingularityNET. Experiments with this simulation
framework currently focus on aspects of the SingularityNET adaptive reputation system
designed by SingularityNET scientist Dr. Anton Kolonin.

The design of the SingularityNET simulation framework is based on social and economic
theory and enables the use of evolutionary algorithms and neural networks within the minds of
coevolving autonomous agents. Agents in the simulation form social institutions as they fulfill
tasks, communicate, and employ one another in a marketplace.

The framework is designed to support micro–macro integration and model a system of social
roles and institutions that emerge from social psychology and micro sociology. Lower level
phenomena that are modeled include symbolic interactionism (from sociology) and cognitive
dissonance (from psychology). We simultaneously model micro–macro integration in
economics, including the emergence of market institutions from the utility-seeking actions of
game theory.

In early experiments with the simulation, we have modeled prejudice and racism, status
symbols, social class, a role-based division of labor, price, a standard of trade (money), cultures
of corruption, political polarization, marketplaces, and competitor ecosystems. This preliminary
work has demonstrated that the simulation framework can encompass a full range of social,
economic, and cultural phenomena. This is essential, as it is difficult to foresee what sorts of
dynamics will arise in a mature SingularityNET that is coupled with a rich variety of external
human and computational systems.

75

https://singularitynet.io/team/
https://blog.singularitynet.io/singularitynets-first-simulation-is-open-to-the-community-37445cb81bc4
https://singularitynet.io/team/

The critical aspect in the design of our SingularityNET simulation framework is also the key
component of decentralization: autonomy. This not only includes autonomy of action—the
ability of the agent to fulfill its utility as it sees fit—but also autonomy of perception—the ability
of the agent to freely interpret its environment, including communications, in a way that fulfills
its utility.

Unlike many coevolutionary systems, in our approach, fitness for groups of agents is not
averaged across the agents. Rather, agents solely seek their personal utility. Since the agents can
signal to one another and have the autonomy of perception to interpret these signals, they learn to
classify and contract with other agents to meet their needs.

In our simulation, the agents assign other agents to groupings that they find useful. These
groupings help agents find other agents to use, and the groupings eventually become
institutionalized roles when agents find it to their advantage to share their beliefs about the
groupings. Agents can exert more pressure as a group than they could alone; consider, for
example, the group of natural customers and the group of producers of some product type.

As in the theory of symbolic interactionism, agents find it to their advantage to behave
according to the beliefs others have about them. These self-organized groupings are social roles
and institutions. They emerge from micro-level utility-seeking symbolic interactionism. Thus,
agents are not “assigned” to groups as in many cooperative coevolution programs; rather, groups
emerge from utility-seeking interaction.

Our process of micro–macro integration and emergence improves upon the averaging
techniques of cooperative coevolutionary fitness. These techniques do not attempt to assign
credit (which would limit the ability of agents within groups to take on similar roles in other
groups). In our system, assignment of credit and thus feedback between agents occurs through
the price signal. Through the price signal, agents of different intelligence capacities are
incentivized to take on the role that is most valuable to others. Agent cultures develop and last
beyond the life of an individual agent. Old AIs guide new AIs into their most lucrative role in
this self-organized system.

This general simulation approach has been leveraged in different forms in Dr. Duong’s
previous work and has been labeled symbolic interactionist simulation of trade and emergent
roles (SISTER). In our early SingularityNET research we have used SISTER to model real
societies (to test social policy) and to generate AI systems in artificial societies.

6.1.1 Agent Selection in Simulated Networks

In our current work, we apply SISTER to help diverse AIs of different capacities self-organize to
solve problems. These AIs cooperate and compete in more complex ways than present-day AI
ensembles.

SISTER creates a semantic space by which agents can learn their role in an emergent system.
In our simulation of SingularityNET, many different AIs come together to solve the problem of
choosing, parameterizing, and assembling Python programs—and these Python programs are
themselves AIs.

We are currently using CMA-ES as an AI in each SISTER agent, but any scalar or discrete
AI method can be used in any combination of agents. There is a blackboard (that can be either
global or localized) on which agents bid for other agents. Customers develop tests based on their

76

http://www.scs.gmu.edu/~dduong/dissertation.pdf
https://en.wikipedia.org/wiki/CMA-ES

previous experiences of which suppliers provide good services and use these tests to choose
suppliers. Customers also learn criteria regarding the supplier’s price. Lastly, there are criteria
regarding the “sign” the supplier displays, as discussed in the next section.

6.1.1.1 AI Agent Signs in SISTER Systems

The sign can be a float vector or a string of zeros and ones. The sign starts out meaning nothing,
but agents learn to use it to identify themselves as they become more successful at making their
customers succeed. In doing so, the sign comes to mean an implicit set of requirements.

The process by which signs come to have meaning and agents group into types that can solve
use case is as follows:

In the beginning of the simulation (before agents have learned anything), a customer (Carl) is
looking for a “clusterer” service to cluster a dataset. Carl requires that the clusterer pass a
silhouette test and will take it for any price under 23 AGI tokens. Because he hasn’t yet learned
what sign to look for, he generates a random requirement for the sign.

Two clusterers on the network pass Carl’s test and have a price under 23 AGI. One of them
(call it Chloë) happens to have a sign closer to the arbitrary sign Carl seeks. Carl uses Chloë’s
services, and both improve their utility on the network. Thus, Carl learns (by reinforcement) to
look for a similar sign next time he wants to hire a clusterer. Chloë The Clusterer learns to
display such a sign for its clusterer services. Since the customer is looking for a sign, other
agents displaying the sign can come in on the trade. In this way, the sign comes to mean
“clusterer.”

Let us now suppose that Chloë subcontracts with another service, a vector-space creator
named Victor. In this case, Victor will get money only if someone hires Chloë. So the sign that
the vector-space creator displays to its clusterer customer will come to mean “I can help you pass
the silhouette test.”

However, Chloë is not the only customer that Victor The Vector-Space Creator has. Victor
also sells services to another clusterer, who is named Claude. Claude is not hired on the basis of
the silhouette test; he is hired by Molly, who has been tasked with making a model that fits a
particular dataset well.

So Victor’s sign now also means that he can help Molly fit her models to the data by means
of helping Claude The Clusterer. Victor’s sign means he can help in a particular, emergent set of
use cases that provide utility, given the capabilities of the competition.

Now suppose a new agent comes into the simulation and displays a sign indicating it can
provide “clusterer” services. It will receive requests to fulfill myriad requirements, and it will
receive offers from vector-space creators because the network has learned that clusterers require
the services of vector-space creators. If the agent can perform the services effectively, it will
receive selective pressure to keep displaying the sign. If it can do a better job than its
predecessors, it may not buy the services of vector-space creators but rather something else to
please its customers. If it cannot do as well as its predecessors, it receives selective pressure to
display another sign denoting something at which it is more competent.

In SISTER systems, the signs form a utility space of similar requirements and their typical
implementations. As the simulation goes on, agents become competent, a competitive system
develops, testing thresholds rise, more tests are required, price thresholds rise, and signs come to

77

have more precise meanings. The tests for unsupervised methods (like clusterers) are weak, but
the aggregated effect of multiple weak tests, from groups of customers, groups of their
customers, and so on, is effective in shaping performance.

6.1.2 Social Algorithms to Solve Social Problems

In prior work that involved applying SISTER for US government agencies, we used
coevolutionary AI to help solve social problems. One line of our research is to understand the
origins of prejudice and stereotyping and how policy measures can mitigate the problem.

Using agents that each have a recurrent neural network for a mind, we simulate how persons
of different ethnicities or genders can, though they have equal inner talent, nevertheless come to
be misunderstood institutionally and be forced into social roles that do not fulfill their talent
potential.

We also study social media algorithms such as PageRank that overrate persons of one
stereotyped class and underrate persons of another stereotyped class. We look at how this forms
social class and oligarchy and at alternative social media algorithms that are not only more just
but result in better utility for almost every stakeholder.

We then analyze digital protections against prejudice and oligarchy. We look at natural social
protections that are absent in social media and that result in vulnerability to psychological
manipulation. In particular, we study information warfare and its effect on populations through
models of psychological cognitive dissonance implemented with recurrent neural networks in
agent minds. We show the development of political polarization in society as a whole and
compare it to more standard political models, such as those based on median voter theorem when
not under the influence of information warfare.

Given this model, we test policies to heal the divide. We look at the soft equilibria of social
institutions and how corruption can spread through society via hybrid warfare tactics that
undermine social institutions. We examine the effects of such tactics on individuals as well as
how society may heal from the resulting breakdown.

It is important to note that many of the types of phenomena that we have modeled in actual
human societies can be expected to occur in a mature SingularityNET network. The formation of
oligarchies, the overrating of classes of agents due to stereotypes, and the emergence of
corruption and polarization are all phenomena that can occur in AI agent systems as well as in
human societies.

In order to have an adequately functioning large-scale SingularityNET, we need to prevent
these sorts of phenomena achieving any level of prevalence; the best way to do that is to
understand the conditions under which they can arise and the potential methodologies for
counteracting them by experimenting with appropriate simulation models.

To apply this sort of modeling in a fine-grained way to real-world situations (among either
humans or AI agents) requires using real-world data to condition critical aspects of the
simulation. We offer three ways to get the social environment into a model.

One is through creating a Markov decision process in which the effects of policies are taken
from observational data in a manner that teases out causes. We use instrumental variables, the
“do” from Pearl, and the potential outcomes framework to ensure that the causal connections of
the Markov decision process are entered correctly.

78

Next, we recognize that in a complex system, we can’t just put the data in directly; feedback,
network effects, and mutual causation have created the observational data. We use
coevolutionary tools and run a simulated form of the data through multiple models to recreate the
same set of virtuous and vicious cycles found in the observational data records.

Finally, it may be difficult to get the data into the ontology of the simulation (particularly for
free-text data). We offer a clustering technique that is based in coevolution in which only a few
exemplars are needed to seed the clusterer to the same ontology as the model.

6.2 Tononi Phi for Measuring Integrated Information in Complex Cognitive Networks

It is difficult to measure and analyze the overall state of complex cognitive AI systems. We are
currently experimenting with the Tononi Phi coefficient as a tool for measuring the overall level
of “integrated information” in various complex AI networks, including SingularityNET itself, the
OpenCog AI framework, and Hanson Robotics’ humanoid robot Sophia.

In 2004, University of Wisconsin psychiatrist and neuroscientist Giulio Tononi created a
detailed and evolving system and calculus for studying and quantifying consciousness that he
called integrated information theory (IIT). The Phi coefficient defined in this framework
measures the level of holistic information integration in a system. It has been posited by Giulio
Tononi and others that Phi is a fundamental measure of the “level of consciousness.” Regardless
of its interpretation, it is an interesting measure of a consciousness-related property of a complex
cognitive system. Targeting Phi maximization may lead to worthwhile results.

Phi also has potential as a feedback mechanism to tune parameters of complex dynamical
systems and encourage the emergence of high-level network structures. In this manner, IIT and
Phi may serve as additional tools for analyzing complex network structures, developing true
AI-based social and emotional robotic systems, and creating better and more intelligent general
AI services.

We have experimented with measuring Phi across time series generated by OpenCog’s
ECAN attention-allocation module while the system parsed and semantically analyzed a series of
short documents. We have also calculated Phi values while the OpenCog system controlled the
Sophia humanoid robot as she led a person through a structured meditation session.

In the latter experiment, due to the difficulties caused by computational growth, we also
experimented with a new methodology: pre-preprocessing the data using independent component
analysis (ICA) to reduce the problem dimensionality. In both experiments, we compared the Phi
value time series obtained with the time series of events in the external situation and behavior of
the OpenCog system. Qualitatively, we found correspondences between changes in Phi and
changes in the situation and behavior of the cognitive system, which provides preliminary
validation for the methodology.

As we continue IIT and Phi experimentation, one of our goals is to create an additional tool
to measure complex emergent phenomena in order to guide the development of
better-performing, more-intelligent AI services. By providing a robust theoretical method of
quantifying interconnectedness, IIT can ultimately lead to improved cooperation both within and
among various system components.

79

https://www.hansonrobotics.com/tononi-phi-sentience-consciousness-and-smart-ai-futures/

6.2.1 Tuning Parameters

As a measure of system connectedness, Phi/IIT will be used to improve many of the complex
network structures underlying many AI services. IIT and Phi measurements can contribute to
better-quality services by establishing an additional feedback loop to tune the many free system
parameters in complex dynamical systems. The diagram below illustrates a representative
feedback loop in the ECAN module. PLN, MOSES, and other tools would have similar
diagrams.

Figure 15. A representative feedback loop diagram for the ECAN module

6.2.1.1 Quantifying Cognitive Measures in AI Systems

The concept of cognitive synergy is central to the OpenCog AI framework. We will apply IIT
and Phi measurements to larger-scale structures to facilitate both inter-module and intra-module
parameter tuning. Exploring IIT in this manner will create synergies between a number of

80

OpenCog’s primary modules and enable approaches to general problem-solving that are more
comprehensive and fundamentally more robust (i.e., better able to overcome “stuckness”).
OpenCog modules and tools with which we will experiment include the following:

● PLN. A probabilistic logic engine based on forward-chaining and backward-chaining
within the probabilistic logic networks formalism

● MOSES. An evolutionary program-learning framework incorporating rule-based program
normalization, probabilistic modeling, and other advanced features

● ECAN. “Economic attention allocation” engine based on nonlinear dynamics that assigns
attention according to the spreading of ShortTermImportance and LongTermImportance
values and Hebbian learning

● Pattern mining. Greedy hypergraph pattern mining based on information theory

● Clustering and concept-blending Heuristics for forming new ConceptNodes from
existing ones.

Higher Phi values should correlate with interesting cognitive behaviors emerging from such
systems (and initial experimentation suggests that this is the case). Phi measurements of “system
connectedness” can enhance services by, for example, quantifying the synergy between different
network substructures, modules, and tools.

6.2.2 Impacts on Specific SingularityNET Services

In social and emotional robotics, preliminary demonstrations suggest that Phi correlates with
qualitatively interesting behavior during Sophia’s meditation sessions. We plan to pursue further
research into this relationship between Phi and Sophia’s perceptions and actions within the
Loving AI project, a collaboration with Hanson Robotics, iConscious, and other parties focused
on creating robots and avatars that display unconditional love toward people. Through Phi
measurements during human–robotic interaction, Phi research could also improve facial
expressions and movements as well as language understanding and speech synthesis.

The ability to improve system performance and intelligence (both within individual
components and via synergies between components) should lead to better SingularityNET
services in multiple domains, including our initial set of network analytics, social robotics, and
bio-data analytics.

Specifically, in the area of network analytics, in addition to improving parameter tuning,
overall Phi measurements can

● provide improved measures of causal relationships for social network analysis and
visualization and probabilistic graphical modeling as a result of Phi’s inherent
cause-and-effect repertoires;

81

● help quantify the degree to which system phenomena emerge from simple rules;

● improve the study of cooperative and competitive connections in networked artificial
intelligence between distributed AI programs and the processes by which these
algorithms self-organize into better solutions; and

● aid in the study of virtuous and vicious feedback cycles in real-world systems by
quantifying a system’s integrated connectedness and improving its cognitive synergies,
ultimately helping find the best policies to achieve goals.

6.3 Offer Networks for Optimizing Complex Exchange Patterns in Agent Systems

OfferNets is a research initiative aimed at creating a radically decentralized economy powered
by diverse, independent, interacting agents. It combines two R&D paths that are tightly related
yet embrace different levels of abstraction:

● A massively scalable computing model and a software framework supporting
asynchronous execution of heterogeneous processes concurrently using a shared data
structure and able to model any mixture of emergent and controlled coordination among
them. �

● A decentralized economy providing an alternative to purely currency-based exchanges.
This economy features a complex network of interactions and optimizes reciprocal
exchanges of goods and services by finding agents with compatible and complementary
preferences and coordinating their interactions. �

Research and development of (B) is crucially dependent on (A), but the importance and
application of (A) are much broader than those of (B). This means that we are designing the
decentralized computing and simulation modeling platform to be maximally horizontally
scalable beyond applications for OfferNets economy.

6.3.1 Decentralized Computing

The concept of open-ended decentralized computing is being developed within the OfferNets
research initiative. It allows heterogeneous asynchronous processes to achieve spontaneous or
guided compatibility via indirect communication through a shared topological space.

The goal of this model is to create large-scale simulations of decentralized systems, including
economies, different combinations of governance regimes and structures, multiple currencies,
barter networks, and more. Even though the model is inherently decentralized, it does allow for
the implementation of different levels of centralization.

82

https://github.com/singnet/offernet

6.3.2 Simulation Engine

The software architecture on which OfferNets simulations are run consists of two large parts:

● An actor framework for powering asynchronous execution of heterogeneous agents’ logic
and peer-to-peer interactions via message passing �

● A graph database powered by an enterprise-level graph database server for keeping and
updating the topology information of the network and enabling indirect communication

6.3.3 Monitoring and Analysis Engine

Simulation modeling requires the collection and analysis of information about events happening
in the system. Since a decentralized applications framework by definition does not have a single
point of access to the system, we have built a specialized engine for collecting and handling large
amounts of streaming data coming from many sources.

The basic principle of the engine is that is issues monitoring messages on behalf of each
agent and then caches and indexes them into a single (but possibly distributed) database. The
technical basis of the engine is ElasticStack, an integrated streaming data-management and
analysis solution.

The monitoring pipeline is fully distributed, can be scaled to multiple machines, and is
tolerant of failures and restarts of each component. Likewise, the simulation engine can be
readily scaled to multiple machines depending on the required load for simulation or production
environments. Both provide real-time monitoring across all machines via web front-ends.
Real-time network and agent activity monitoring and event capturing are available via custom
web front-ends accepting data streams from other parts of the infrastructure.

6.3.4 OfferNets Economy

The decentralized computing model and architecture allow us to implement, test, deploy, and
observe the evolution of a virtually unconstrained number of computational processes interacting
and coordinating directly or indirectly within the ecosystem. The challenge is to define concrete
processes, design their interaction, and fine-tune the OfferNets economy toward preferred
dynamics.

The OfferNets domain model is specified as a property graph schema, meaning it is
formalized in terms of types of nodes, their properties, types of edges, their properties, and
processes defining graph-traversal and mutation constraints. Every agent operating in the
network is allowed to implement any process. Processes that require interaction with the social
graph of OfferNets are implemented as graph traversals. Other processes are represented as
conventional asynchronous algorithms. OfferNets currently implements basic similarity-search
and cycle-search processes. Cycle execution and advanced search processes are in the pipeline.

83

Conceiving, implementing, and running computational experiments on OfferNets and then
analyzing the data collected by the monitoring engine is computationally intensive due to the
large parameter space and many repetitions needed for meaningful exploration.

Furthermore, it is an open-ended process in the sense that every simulation raises fresh
questions and informs the setup of the next one. Both the computational infrastructure and the
domain model change and improve with each iteration. Since the start of simulation modeling
experiments in August 2018, we have been running simulations to compare centralized and
decentralized search algorithms on the same graph structures.

6.3.5 Integration into Main SingularityNET Network

OfferNets research initiative is estimated to contribute to the development of SingularityNET’s
decentralized AI network in a few different ways. The exact avenues and scope of integration
will be determined after the beta launch from the following possibilities:

● Developing an automated decentralized marketplace and economy of AI agents on top of
the SingularityNET network. Since OfferNets provides a generic decentralized
mechanism of chaining processes by their inputs and outputs, it may be a basis to
research the mechanism of building automatic workflows among SingularityNET AI
agents. �

● Large-scale simulations and testing on top of SingularityNET beta, including simulations
of reputation systems. OfferNets allows us to run simulations on top of SingularityNET’s
beta infrastructure by constructing simulated AI service providers with different
behaviors that would call SingulartyNET infrastructure by its gRPC API. �

● Providing conceptual and computational insights into the operation and governance of
decentralized networks for implementation in SingularityNET. OfferNets follows a
radically decentralized design philosophy, but real-world systems often require a healthy
balance between centralization and decentralization. Pushing the limits of
decentralization in a research environment provides insights that may be useful in
pragmatic settings, yet may have to be separately tested and implemented. �

● Further conceptual research into and simulation modeling of new decentralized economic
and social models that maximize the capabilities of AI and advanced autonomous robot
integration in SingularityNET and possibly beyond.

This avenue can be extended to include partnerships with existing think tanks working on new
economic and social governance ideas.

84

7. Guiding the Network from Infancy to Childhood and Beyond

The specifics of the SingularityNET platform and the assemblage of AI algorithms and services
available on the network are intended to evolve and adapt in an agile way based on the needs of
the ecosystem and the contributions of the community. The success of the project will entail the
rapid obsoleting of a significant percentage of the material presented in this whitepaper.

The spirit of the SingularityNET design, however, is intended to be robust with respect to
growth and change. The concept of a network of interoperating and value-exchanging AIs,
controlled in a democratic and decentralized manner, delivering services to customers on their
own and interlocking into subnetworks whose intelligence exceeds the sum of the intelligences
of the parts—this is the key and what the project founders and the guiding SingularityNET
Foundation wish to see continue even as the particulars of protocols, algorithms, structures, and
standards mature.

A consequence of this dynamic aspect of a project like SingularityNET is the centrality of the
community to the project. It is the ecosystem of developers, users, testers, evangelists, and other
community members that will drive the ongoing growth and change of the platform and the AI it
supports.

With the beta release, SingularityNET is beyond its infancy but still in its very early
childhood. In this germinal phase, the growth of the network will be powered and guided by the
exchange of information, passion, and value among both the humans and the AIs involved in the
network.

85

