
The Qitmeer White Paper:
The guardian of trust.

Qitmeer team
paper@qitmeer.io

October 4, 2019
Version 0.5.4

Abstract

Bitcoin[1] was born with revolution which opened a new horizon of currency issuance
that becomes open and fair by a cryptography-based decentralized payment network. The
underlying ledger mechanism of Bitcoin (blockchain), is capable of playing a signi�cant
role in the �nancial system due to its tamper resistance. The Blockchain technology will
reshape Interest-free �nance, as a signi�cant alternative system of global �nancial system.

With the arrival of 10-years birth of bitcoin, the blockchain infrastructure is facing vari-
ous challenges from technical perspective. Moreover, Qitmeer considers openness, fairness,
fault tolerance, scalability as the core metrics to assess a promising blockchain paradigm,
and a blockchain system achieved a desirable balance among these metrics is regarded as
Classical Blockchain Setting.

Qitmeer Consensus adopts the SPECTRE[2] as its fundamental protocol. SPECTRE is a
fast con�rmation and high throughput BlockDAG protocol, which guarantees high perfor-
mance in a payment network. Additionally, Qitmeer incorporates another high throughput
BlockDAG protocol GhostDAG[3], which is highlighted on unprecedentedly supporting
transactions linearly ordering, to circumvent SPECTRE’s weak liveness and provide order-
ing service for the fair scheme of the reward system. The Qitmeer Consensus is in line
with Classical Blockchain Setting which could join and leave the network freely by Proof-
of-Work, with the collaboration model of DAG ledger guarantees that miners gain rewards
corresponding to their contribution respectively, the 50% fault tolerance as secure as bit-
coin, robust scalability that is subjected to physical network limit. The mining algorithm
is also a vital source of fairness other than consensus algorithm per se. Cuckoo Ring is a
graph theory based proof-of-work mining algorithm and is practically ASIC resistant due
to memory-hard calculation.

According to Shariah requirements, Qitmeer designs a UTXO-based unique token is-
suance scheme, which has e�ectively solved two main challenges: Intrinsic Value and As-
sets Authentication. Issuing a certain amount of assets must consume a certain amount of
the native currency. Moreover, the entity must be warranted a license to issue assets.

Qitmeer devises a set of speci�cations and protocols to be adopted in the Global Islamic
economy ecosystem, such as wallets and miners. As for interoperability, Qitmeer recog-
nizes the utilizing of cross-chain protocols to integrate various cryptocurrencies and o�er
reliable o�- chain smart contract services.

1

mailto:paper@qitmeer.io

1 Introduction

1.1 Background

Trust is the cornerstone of �nancial system, while in traditional approach, multiple unac-
quainted parties require a trustworthy third party to guarantee the security of transactions.
However, the third party is centralized and subject to single point failure, unlikely to guarantee
its honesty.

Bitcoin is an open P2P network, meaning that there does not exist a centralized server, each
node can join or leave the network freely. The calculation-heavy but validation-easy Proof-of-
Work consensus is designed to ensure nodes gain rewards relevant to their contribution to the
network’s running security, which is supposed to be fair. Bitcoin has a hash-list-like ledger to
guarantee tamper resistance, this disruption has been driving tons of researches on its work-
ing mechanism. The concept of ’BlockChain’ is introduced to represent this mechanism and
commonly accepted. Owing to trustlessness and tamper resistance, an increasing number of
applications of blockchain occur in the �nancial system which acts as the new driving force to
re-shape the �nancial system.

With the innovation of Bitcoin ten years ago, the blockchain infrastructure is facing various
challenges from technical perspective and has been deviating from its essence philosophy. Bit-
coin is no longer decentralized, the top �ve mining pool has controlled majority hash power
and would be easy to carry on an attack if there is any reason. Miners have to join mining pools
since the opportunity cost is much higher than their contribution. In other word, Bitcoin is not
fair any more, because Bitcoin does not scale, seven transactions per second throughput, one
hour con�rmation time, high cost of the transaction fee, far from promising as a global payment
network.

Bitcoin needs to be reformed to re�ect its essence philosophy. There are Countless solutions
claim themselves to have been solved all these challenges. However, few achieved indeed, just
trading o� one metric with another, like sacri�ce decentralization, which is the core source of
security for scalability. So, what is the essence philosophy of bitcoin? Qitmeer has de�ned
it as Classical Blockchain Setting, which has deeply innovated design philosophy of Qitmeer
network.

1.2 Classical Blockchain Setting

There are many blockchain evolves and each has its own de�nition of blockchain technology.
However, Qitmeer network acknowledged bitcoin’s objectives, Qitmeer holds the view that the
following four metrics as Classical Blockchain Setting.

1.2.1 Openness

Openness is an essential feature to distinguish permissioned and permissionless blockchain,
which means every node should join and leave the network freely.

2

Prede�ned special roles

An open network allows di�erent roles, in the bitcoin network, nodes could choose to be an
SPV(Simpli�ed Payment Veri�cation) node, full node or miner with freedom, so from the pro-
tocol’s aspect, bitcoin is open. Whereas, in Delegated Proof-of-Work, the block producers are
voted o� the chain with prede�ned con�gurations,which demonstrates limited openness in the
network.

Practically closed

Bitcoin is de�ned as open source according to the protocol, it is actually closed in practice.
Miners have to join mining pools to minimize the risk of opportunity costs, at the expense to
lose their free will. The situation is getting deteriorating in a speedy manner as described above.

1.2.2 Fairness

Fairness means that the rewards should be consistent with the contribution in the network
which is Incentive-Compatibility.

Opportunity Cost

The expectation of rewards between solo mining and pool mining is equal in terms of proba-
bility. The point is, their opportunity cost is considerably high - either mine a block to get a
dramatically high reward or wait a long time without any return. Therefore, miners have to
turn to the mining pool to have a stable incentive.

Cost E�ciency

Cost E�ciency is referring to mining cost. Mining cost mainly includes the electricity price
and mining e�ciency, and the latter is much more critical due to ASIC. ASIC is customized to
direct a speci�c mining algorithm, so the mining e�ciency per unit of cost is much higher than
generalized computers. For instance, the hash rate per dollar for AntMiner S9 is about 20000
times greater than for GTX570; it is nearly impossible for a personal computer to win the hash
rate competition.

1.2.3 Secure

The security is how robust the network is to sustain the attack, mainly referring to overrun a
con�rmed transaction.

Decentralization

Decentralization is the most signi�cant feature of bitcoin to be compared with traditional pay-
ment network. Decentralization could avoid single point failure on account of the fact that it is
almost impossible to collude with the majority of all nodes in a fully decentralized network.

3

Fault Tolerance

Fault Tolerance refers that the network should be resilient to a certain proportion of malfunc-
tioning resources, and fault tolerance is the upper bound of the percentage. In a decentralized
network, 50% fault tolerance is the desirable case according to the majority law.

1.2.4 Scalable

A network that can o�er relatively stable services with its scale increasing is considered scalable.
Blockchain network includes the following services:

Throughput

The throughput is the number of transactions per second (TPS) and its performance is of es-
sential importance when network is scaling, while up to present, Bitcoin’s throughput is upper
bound to 7 TPS despite of how many nodes are available there in the network, which limits
itself to act as the global payment network.

Con�rmation

The con�rmation is the time that the recipient to wait until the transaction is unlikely to be
reversed, which should not be increased with networking scaling. In bitcoin network, the con-
�rmation time is six blocks or one hour. Con�rmation a�ects user experience signi�cantly,
especially in a payment network, users won’t stand to wait too long to accept their transac-
tions.

Cost

The main component of cost is transaction fee which should be maintained in a reasonable
range, since it would make payment impractical if too high, or it would be subject to sybil-
attack if it is too low. With the mining di�culty increasing, Bitcoin transaction fee is getting
higher and higher, and it won’t be suitable to serve as a global payment network as it aims to
be, up to present, the average price of bitcoin is roughly 2$.

1.3 Speci�cation

The Qitmeer network speci�cation is designed to follow Classical Blockchain Setting. The four
metrics have some intrinsic contradiction among each other, Qitmeer cannot achieve best in
each simultaneously, but �nd an optimized balance, i.e., seek for high scalability based on an
open, fair and secure network.

1.3.1 Openess

Proof-of-Work is the openest way to join a blockchain network due to the only resource required
is electricity, which is physical and owned by each of the nodes.

4

Proof of Work

Proof-of-Work is the openest way to join a blockchain network due to the only resource required
is electricity, which is physical and owned by each of the nodes.

No Prede�ned Nodes

Prede�ned Nodes refer to special nodes de�ned in the protocol. Note: though there are mining
pools in bitcoin, they are unexpected in bitcoin protocol. Thus, bitcoin still has no prede�ned
nodes, so does Qitmeer because it is in line with bitcoin’s paradigm.

1.3.2 Fairness

BlockDAG is fair due to its adoption of a collaboration model instead of competition model of
blockchain.

Mining Pool Resistance

Mining pools centralization is the consequence of high opportunity cost, which is the conse-
quence of the competition model. Qitmeer’s BlockDAG-based protocol SPECTRE is a collabo-
ration model, the opportunity cost of solo mining is equal to that of pool mining. As a miner
either individually or collectively, it is not compulsory to join a mining pool, which would lead
to the risk of centralization.

Anti-ASIC Mining Algorithm

Cuckoo Cycle is a graph-theoretic proof-of-work algorithm which prevails for ASIC resistance.
Qitmeer adopts this algorithm to guarantee that no one has too much mining e�ciency advan-
tage.

1.3.3 Security

Security is the top consideration in the Qitmeer network. Qitmeer has achieved fully decen-
tralized and 50% fault tolerant. Thus, there is no compromise to trade-o� security with other
metrics.

Fully Decentralization

All the nodes in the Qitmeer’s network are peer nodes and are entitled to participate in consen-
sus.

50% Faulty Tolerance

The malicious adversary has to possess 50% hash power to control the network. Either in SPEC-
TRE or GhostDAG, the fault tolerance is irrelevant with the throughput, whereas the security
is inversely proportional to throughput in bitcoin.

5

1.3.4 Scalability

There are features of Qitmeer network such as high scalability, fast con�rmation, high through-
put, and low transaction fees, that could ensure Qitmeer will be running stably in a considerable
long time.

Fast Con�rmation

The Qitmeer adopts the SPECTRE as consensus algorithm which is a speedy con�rmation
BlockDAG protocol.

High Throughput

SPECTRE is a BlockDAG protocol, and the throughput could employ full potential performance
subject to the network’s physical metrics, such as network bandwidth or propagation delay.

Low Cost

Technically, the cost is not scaling since the transaction fee is increasing slightly with the net-
work growing. However, the average cost will keep relatively insigni�cant and reasonable for
a long period.

2 Qitmeer Token Design

The existing blockchain networks have not taken into consideration the Shariah compliance and
ethical concern entirely, from its whole ecosystem when they initiate their design. However,
Qitmeer has taken Shariah Compliance into consideration rooted from its underlying philos-
ophy, and penetrated through the whole technical architecture , until the applications in the
ecosystem, in which it has been designed an e�ective approach, namely OP_TOKEN.

2.1 Background

2.1.1 Problem de�nition

Blockchains are ought to consider two main points to be considered as Shariah compliance in
the Blockchain industry:

Intrinsic Value

Assets must have underlying value and cannot be created out of thin air. On existing token
issuance platforms like Ethereum[4], individuals can issue a token of arbitrary amount without
any foundation.

Assets Authentication

The blockchain should not allow any issuance of illegitimate assets and unethical business.
Existing blockchains are too unrestricted in the event of assets authentication.

6

2.1.2 Related works

The OP_TOKEN is inspired by Color coin idea, which represents and manages real-world assets
on top of the Bitcoin by using OP_RETURN, and the OP_GROUP, a referenced implementation
of issuing assets designed by Andrew Stone.

The OP_TOKEN �t various practical scenarios with unique features like asset compilable and
value relevant. There are some related concepts in the details below:

UTXO

The Unspent Transaction Outputs (UTXO) are used whether the transaction is valid. there are
no accounts required in Qitmeer network. What users have in the network and spend are a
bunch of unspent transaction output. This could come up with the balance by summing up
UTXO.

Figure 1: utxo model

The �rst transaction tx1 has three outputs with the �rst spent, so tx1 has 2+3=5 coins balance.

The second transaction tx2 spends the 2 UTXOs of tx1 and pays to 3 addresses and creates three
new UTXOs.

Note: now the old UTXOs (of tx1) are no longer UTXO so cannot be spent later.

Script system

The mechanism behind how users spend their UTXOs is to execute a particular script. The
output stores half of the script and it has to present the other half and combine both in order to
verify if the money is spent. The former half is called locking script, like a locked treasure box,
and the latter is unlocking script, like the only key to the box.

For example, a typical instance of Pay-2-Public-Key-Hash(P2PKH)[5] Locking Script in UTXO:

OP_DUP OP_HASH160 <PUBLIC_KEY> OP_EQUALVERIFY OP_CHECKSIG

Unlocking Script in a newly created transaction:

<Signature><PublicKey>

7

Combine unlocking script with locking script:

<Signature><PublicKey> OP_DUP OP_HASH160 <PUBLIC_KEY> OP_EQUALVERIFY
OP_CHECKSIG

This whole script consists two steps 1. <PublicKey> OP_HASH160 <PUBLIC_KEY>
OP_EQUALVERIFY To verify if the public key in the unlocking script matches that in
the locking script. 2. <Signature><PublicKey> OP_CHECKSIG To check if the signature is
valid.

Colored coins and Tether

Colored Coins[6] is a method that represent assets on blockchain, it can leverage the tamper-
proof capability of blockchain. However, It uses transaction script operation OP_RETURN
to interrupt script execution early. Therefore, it can add information to the assets after
OP_RETURN without violating the script validation.

Locking Script:

OP_RETURN <DATA>

Moreover, the stable coin Tether[7] (USDT) also uses OP_RETURN based OMNI Layer protocol
to de�ne the asset on the bitcoin.

Here are a typical USDT transaction and details of its protocol design
1 OP_RETURN 6 f 6 d 6 e 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 f 0 0 0 0 0 0 1 5 c 9 0 5 4 9 0 0

Figure 2: USDT

OP_GROUP

The OP_RETURN scheme is more suitable to apply on mature blockchain, since it does not
change the underlying blockchain protocol and will not risk forking. However, the weakness is
that miners cannot verify its protocol, so there would be some security risks.

OP_GROUP[8] is an improvement proposal of assets issuance on Bitcoin Cash (BCH)[9] from
Bitcoin Unlimited (BU). Thus, OP_GROUP supports transfer, destroy and insurance of Token.
Since OP_GROUP is an extension to the BCH script system, it is part of the BCH protocol. Thus
miners can do the veri�cation, which is more reliable.

The basic “colored” pay 2 public key hash script would be like:

8

OP_DATA(group a d d r e s s)
OP_GROUP
OP_DROP
OP_DUP
OP_HASH160
OP_DATA(pubkeyhash)
OP_EQUALVERIFY
OP_CHECKSIG

The main di�erence is simple, just adding a group address to distinguish di�erent groups, and
other operations, such as create and destroy assets, are similar.

2.2 OP_TOKEN Design

2.2.1 Overview

There is a unique token named LICENSE in OP_TOKEN. The relevant regulatory bodies,
shariah-governance entities, industry practitioners with public credibility within the ecosys-
tem are invited to receive the licenses to oversight the compliances issues that might occur
along the course of mainstream adoption of the protocol. Any entity planning to issue a token
needs to be warranted with a license. Peers can transfer licenses as they are also tokens in
nature. However, the originator must be extra careful in event of transferring in order to avoid
non-compliance risk due to the records is public and immutable.

2.2.2 Issuance of License

Licenses are all generated in the genesis block and distributed to C preserved committee mem-
bers. One smallest unit (QIT) can represent a license, one block has M coins, one coin= N QIT,
so we have M*N license in total, which is su�cient for asset issuance.
C = 100, M = 10, N = 10^8 (M*N = 10 billion),
all examples are based on this setting
Ex1: Distribute licenses to the committee,
M*N/C = 100 million for each member.

INPUTS:

INPUT:
PREVIOUS_OUTPUT: # (COINBASE of GENESIS)

S: "DUP HASH160 [GEN] EQUALVERIFY CHECKSIG"
V: 10000000000

S: "[SIG] [GEN_PK]"
OUTPUTS:

OUTPUT:
S: "[LIC] TOKEN DROP DUP HASH160 [COMM1] EQUALVERIFY CHECKSIG"
V: 100000000

... ... (COMMITTEE MEMBER 2~99)
OUTPUT:

S: "[LIC] TOKEN DROP DUP HASH160 [COMM100] EQUALVERIFY CHECKSIG"
V:100000000

OUTPUT:
S: "RETURN [DATA]"
V: 0

9

2.2.3 Warrant a license

The relevant entities must be warranted a license to issue assets. The entity can request a license
from any committee member (C.M.). Once the license is granted and approved. These entities
will receive a particular token transfer from the C.M. and the Token is the licensed.
Ex2: C.M. warrant a license to the issuer (ISS),
note the license change will go back to the C.M.

INPUTS:

INPUT:
PREVIOUS_OUTPUT:

S: "[LIC] TOKEN DROP DUP HASH160 [COMM] EQUALVERIFY CHECKSIG"
V: 100000000

S: "[SIG] [COMM_PK]"
OUTPUTS:

OUTPUT:
S: "[LIC] TOKEN DROP DUP HASH160 [ISS] EQUALVERIFY CHECKSIG"
V: 1

OUTPUT: # License change
S: "[LIC] TOKEN DROP DUP HASH160 [COMM] EQUALVERIFY CHECKSIG"
V: 99999999

OUTPUT:
S: "RETURN [DATA]"
V: 0

2.2.4 Issuance of assets

Once the license is warranted, entities can issue assets; however, they cannot set the token
amount arbitrarily. Instead, to issue a certain amount of assets requires converting the same
amount of QITs. The Qitmeer network calls this process as "token mint". Just like the case in
reality, to mint a gold coin requires the same weight of gold qits, tokens need the same amount
of QITs.

The �rst advantage of issuance system is to guarantee tokens’ elementary intrinsic value; thus,
it would signi�cantly mitigate the price �uctuation. Another advantage is that tokens and native
currency are no longer isolated islands of value; which are running in the same ecosystem and
would improve the liquidity and make the whole network stable.
Ex3: Convert 100000000 native QITs, i.e. 1 Coin,
to 100000000 qits of the new token,
note the license will go back to the issuer for future issuance.
INPUTS:

INPUT:
PREVIOUS_OUTPUT: #(1 LICENSE)

S: "[LIC] TOKEN DROP DUP HASH160 [ISS] EQUALVERIFY CHECKSIG"
V: 1

S: "[SIG] [LIC_PK]"
INPUT:

PREVIOUS_OUTPUT: #(1 Qitmeer Coin)
S "DUP HASH160 [COIN] EQUALVERIFY CHECKSIG"
V: 100000000

S: "[SIG] [COIN_PK]"

10

OUTPUTS:
OUTPUT: # License returns to the issuer

S: "[LIC] TOKEN DROP DUP HASH160 [ISS] EQUALVERIFY CHECKSIG"
V: 1

OUTPUT:
S: "[TOK] TOKEN DROP DUP HASH160 [PK] EQUALVERIFY CHECKSIG"
V: 100000000

OUTPUT:
S: "RETURN [DATA]"
V: 0

2.2.5 Transfer of the Assets

The entities can transfer assets to each other. Moreover, the entity could transfer multiple assets
within one transaction. The transaction needs to ensure the input sum of each asset equals the
output sum of each asset.
Ex4: Alice exchanges her 100 RMB token with Bob’s 20 USD token.
INPUTS:

INPUT:
PREVIOUS_OUTPUT:

S: "[RMB] TOKEN DROP DUP HASH160 [A_PKH] EQUALVERIFY CHECKSIG"
V: 100

S: "[A_SIG] 0X83 [A_PK]"
INPUT:

PREVIOUS_OUTPUT:
S: "[USD] TOKEN DROP DUP HASH160 [B_PKH] EQUALVERIFY CHECKSIG"
V: 20

S: "[B_SIG] 0X83 [B_PK]"
OUTPUTS:

OUTPUT:
S: "[USD] TOKEN DROP DUP HASH160 [A_PKH] CHECKSIG"
V: 20

OUTPUT:
S: "[RMB] TOKEN DROP DUP HASH160 [B_PKH] CHECKIG"
V: 100

2.2.6 Melt Token

Melt is the reversed process of mint, i.e., conversion from tokens to native currency. The total
amount of qit is constant, either in the form of Native QIT or Token QIT. However, it is allowed
to transform a token and convert native currency. Issuers can melt their coins to reduce liquidity
in order to keep the price stable, which is practical to implement stable coins. Melt guarantees
the tokens fundamental value, just like the minimum value of a gold coin is the same weight of
gold.

Melt guarantees the tokens fundamental value, just like the minimum value of a gold coin is the
same weight of gold.
Ex5: Melt 100 token qits into 100 native qits
INPUTS:

INPUT:

11

PREVIOUS_OUTPUT:
S: "[TOK] TOKEN DROP DUP HASH160 [ISS] EQUALVERIFY CHECKSIG"
V: 100

S: "[SIG] [ISS_PK]"
OUTPUTS:

OUTPUT:
S: "DUP HASH160 [COIN] EQUALVERIFY CHECKSIG"
V: 100

OUTPUT:
S: "RETURN [DATA]"

V: 0

3 Consensus Protocol

3.1 From BlockChain To BlockDAG

Bitcoin does not scale due to protocol restrain. By Nakamoto Consensus, i.e., longest-chain
rule, 1 MB block size and 10 minutes block rate con�ne bitcoin to reach only 7 TPS theoretical
throughput regardless of the bandwidth and propagation delay.

The most intuitive way to increase scalability is to shorten block time or enlarge block size. The
reason why Satoshi did not adopt is because that will bring forks, as well as distracting the hash
power from the main chain, thus causing security vulnerability.

GHOST protocol introduces heaviest-tree consensus to keep forks without sacri�cing security.
Note that here BlockChain has transformed into a BlockTree. Since the largest subtree has
concentrated the majority hash power, the security is as high as bitcoin. The main chain is the
path, i.e. a blockchain from the genesis to leaf, with the highest number of descendants, other
blocks are o�-chain blocks. Only main chain blocks contribute throughput, o�-chain blocks
help strengthen the security.

BlockTree has dramatically increased throughput because of the higher Block Rate or Size. How-
ever, there is still a waste of the transactions of o�-chain blocks, which should contribute to the
throughput as well. Inclusive[10] protocol proposes a new data structure of ledger, where ev-
ery block con�rms every uncon�rmed block. This improvement upgrades a BlockTree to a
BlockDAG.

Through the development history from BlockChain to BlockDAG, it may indicate that
BlockChain is a particular case of BlockDAG in the event of low throughput, which means both
are the same in essence. As a result, it is the scaling approach whose paradigm is the closest
to the bitcoin network. BlockDAG is robust since it inherits all the long-time-proved stable
features of bitcoin, as well as it could scale in�nitely in terms of protocol, unless it is limited
physically, such as, bandwidth. A robust public chain is the optimal basis for incorporating
further scaling solutions, such as sharding and state-channels, thus BlockDAG is the preferred
scaling solution of Qitmeer.

12

Figure 3: DAG

3.2 Consensus

Qitmeer adopts a hybrid consensus that combines SPECTRE and GHOSTDAG in order to
achieve fast con�rmation and high throughput.

3.2.1 SPECTRE

SPECTRE[2] is a BlockDAG based protocol that achieves fast con�rmation and high throughput
with 50% attack resilience. SPECTRE guarantees safety, which means the transaction is unlikely
to be reversed once it is accepted. However, the SPECTRE guarantees fast con�rmations for
honest users rather than all users which is weak liveness.

There is a trade-o� between liveness and fast con�rmation, whereby SPECTRE prioritizes the
latter due to weak liveness only a�ects malicious users, that enables SPECTRE to be a suitable
protocol for payment model. In the event malicious users launch double spending attack, their
transactions are likely to be delayed inde�nitely.

SPECTRE is a stateless transaction model, whereby there is no need to gain a total ordering over
all the blocks. Only when two blocks con�icting that a pairwise ordering is needed. SPECTRE
employs a voting algorithm to decide which block wins when there is a con�ict between two
blocks. Suppose block x has a con�icting transaction with another transaction in block y, and
also suppose that block z is voting on them with the following rules:

SPECTRE employs a voting algorithm to decide which block wins when two blocks con�ict.
Suppose block x has a con�icting transaction with another transaction in block y, and also
suppose that block z is voting on them with the following rules:

1. If z is in x’s future but not in y’s future, z votes for x in favor of y, denoted as x ≺ y, and
vice versa.

2. If both x and y are in the past of z, then z follows the majority votes in its past.

3. If neither x nor y is in the past of z, then z follows the majority votes in its future.

13

4. Both x and y vote for themselves unless one is in the past of the other.

Here’s an example of how a new block (number 12 in the �gure below) votes:

Figure 4: An example of the voting procedure in the DAG for blocks x and y in SPECTRE

According to rule 4, block x votes for x ≺ y, block y votes for y ≺ x.

According to rule 1, blocks 6, 7 and 8 vote for x ≺ y, blocks 9, 10 and 11 vote for y ≺ x.

According to rule 2, block 12 votes according to its past. Since not all blocks of its past have
voted, we change global view to block 12’s local view, which means block 10 and 11 are excluded.

According to rule 3, block 5 votes for x ≺ y, since the majority of its future vote in favor of x
over y (blocks 7, 8 versus block 9). Note that the current view is block 12’s local view and block
11 is excluded, so we cannot take its vote.

Also according to rule 3, blocks 1~4 vote for x ≺ y.

Now all the blocks in block 12’s past have voted. Block x gets 10 votes. Block y gets 2 votes.
Block 12 follows the majority and votes for x ≺ y thus.

Con�rmation Time

When a node v receives a block x, it loops to calculate the risk of the block. It accepts the block
when the risk is smaller than a given threshold ε. The con�rmation time of block x in node v is
the time since x is received by v until x is accepted by v.

The following algorithm below calculates the risk of block x in Gvt , where Gvt is the block DAG
that v observes at time t.

14

Risk(Gvt , x)
1 if time_now < publication(x)

2 then return 1
3 T ← time_now − receivedv(x)
4 Gx ← Greceivedv(x)+2·d ∪ future(x,Gvt)
5 g ← minx′∈ainticone(x,Gx)

|future(x′, Gx)|
6 return risk_hidden(T, g)

The formula risk_hidden(T, g) is de�ned as:

risk_hidden(T, g) :=
∞∑
l=0

π(l)

∞∑
m=0

Poiss((T + 2 · d) · α · λ,m) ·
(

α

1− α

)(g−l−m)+

,

where

• d is the upper bound on the recent delay diameter in the network,

• α is the attacker’s relative computational power,

• λ is the block creation rate,

• Poiss(a, b) is de�ned as e−a · abb! ,

• x+ is de�ned as max{0, x},

• and π is the stationary distribution which we will explain below.

risk_hidden(T, g) upper bounds the probability that block x is preceded by some attacker’s
block y in pairwise order, where y is published later than x.

π is actually a vector. Informally, it is the statistical distribution of how much more blocks
attacker nodes have created than honest nodes have created since block x is published, which
is called gap in the SPECTRE paper. π(l) is the probability that the value of gap is l.

The value of gap changes as time goes on, forming a random walk which induces an ergodic
Markov chain. Theoretically, it could be any integer ranging from negative in�nity to positive
in�nity. In the worst case, it is always non-negative. Only when the gap is non-negative is
there a risk for block x to be received less or equal votes than some attacker’s block y which
is published later than x, so that y precedes x in pairwise order. This is why in the formula of
risk_hidden the index l, i.e. the value of gap, starts out equal to 0 instead of negative in�nity.

Since the random walk of l induces an ergodic Markov chain, l has a unique stationary distribu-
tion, which is π. In order to calculate π, we need to calculate the transition probability matrix
of the random walk.

Suppose that the value of l ranges from 0 to N , where N is in�nity in the above de�nition. We
de�ne the transition probability matrix as anN byN matrix T . We also denote by δ := α ·λ ·d.
For all 1 ≤ l < N − 1, Tl−1,l = 1− α, Tl+1,l = α, and for l = N − 1: Tl−1,l = 1− α, Tl,l = α.
The �rst column of the matrix is de�ned by: T0,0 := (1 − α) · e−δ, T1,0 = e−δ · α + e−δ · δ,

15

for 1 < l < N − 1: Tl,0 = e−δ · δll! , and TN−1,0 = 1− e−δ ·
[
δ0

0! +
δ1

1! + · · ·+
δN−2

(N−2)!

]
. π is the

eigenvector of T corresponding to the eigenvalue 1, where π(l) ≥ 0 and the sum of π is 1.

In practice, π(l) is very close to zero when l is very large, so we can just pick some N � 1

instead of in�nity. Therefore, the formula of risk_hidden becomes

risk_hidden(T, g) =
N∑
l=0

π(l)

∞∑
m=0

Poiss((T + 2 · d) · α · λ,m) ·
(

α

1− α

)(g−l−m)+

.

It is recommended to calculate π with some well-tested Markov chain library such as the
markovchain package in R.

The sum of series with index m seems to be a sum of in�nite series. However, for m > g − l

we have (g − l −m)+ = 0 and
(

α
1−α

)(g−l−m)+

= 1.

Therefore, the formula of risk_hidden can be further converted as below, where Poisscdf is
the cumulative distribution function (CDF) of Poisson distribution.

risk_hidden(T, g) =
N∑
l=0

π(l)
∞∑
m=0

Poiss((T + 2 · d) · α · λ,m) · (α

1− α
)(g−l−m)+

=
N∑
l=0

π(l)(

g−l∑
m=0

Poiss((T + 2 · d) · α · λ,m) · (α

1− α
)(g−l−m)+

∞∑
m=(g−l+1)+

Poiss((T + 2 · d) · α · λ,m))

=
N∑
l=0

π(l)(

g−l∑
m=0

Poiss((T + 2 · d) · α · λ,m) · (α

1− α
)(g−l−m)+

(1− Poisscdf ((T + 2 · d) · α · λ, (g − l)+))).

With the converted formula we are able to calculate risk_hidden in numerical way. Figure 5
simulates the con�rmation time on di�erent block rates, it show that SPECTRE could achieve
5 seconds con�rmation time on block rates higher than 10 blocks per second and 10% faulty
percentage, which is considerably promising.

3.2.2 GHOSTDAG

Qitmeer is designed for decentralized payment network. In most scenarios , it is su�cient to
provide only partial ordering or pairwise ordering for blocks in the ledger. However, sometimes
it may still need to obtain a total (linear) ordering of all the blocks, especially in the event of
rewarding blocks based on their ordering.

Obtaining total ordering for a DAG ledger is not so intuitive as it is for blockchains due to a
DAG ledger contains forks, which are caused by various factors, such as, network propagation

16

Figure 5: Con�rmation Time

delay, concurrent block creations, faulty miners. Therefore, as a supplement to the consensus
protocol of Qitmeer, it uses GHOSTDAG to obtain the total ordering to reward blocks which
appears earlier in the ordering.

In addition to total ordering, GHOSTDAG also provides Strong Liveness guarantee to make the
consensus protocol more robust, which means both honest blocks and malicious blocks can be
con�rmed within a de�nite time, though it may take a long time to con�rm malicious blocks.

Suppose that the maximal limits of network propagation delay and block creation rate are con-
stant. It is intuitive that if nodes behave honestly, it forms a subgraph where each block has
at most a constant number of forks. We denote this constant number as k. k can be calculated
from propagation time and block creation rate. The subgraph is denoted as a k-cluster. The
biggest k-cluster is called a blue set. Those blocks outside the blue set are called red set.

If we can traverse from block x to block y by following the parent references within each block,
then we say that there’s a partial order between x and y, and y is prior to x. For example in
the following �gure, we can traverse from block J to A through B, so there’s a partial order
between A and J, and A is prior to J. Note not all blocks have partial orders with other blocks.
For example, there are no partial orders between B, C and D. The block set where no partial
order exists is an anticone. The size of any anticone in a k-cluster is at most k.

GHOSTDAG orders the DAG ledger in a way that favours blue blocks and penalizes red ones. It
determines the order between blue blocks according to their partial orders and some topological
sor. Then, for any blue block B, add to the order just before B all of the red blocks in past(B)

that weren’t added to the order yet; these red blocks too should be added topologically. Notice
that for any blue block B, the order on blocks in past(B) should remain the same if we remove
from the DAG blocks in future(B).

An example of the output order of the GHOSTDAG procedure on the small DAG ledger from the

17

Figure 6: GHOSTDAG

�gure above is: (A,D,C,G,B, F, I, E, J,H,K). Nevertheless, �nding the maximum k-cluster
is NP-hard, so GHOSTDAG is therefore of less practical use for an ever-growing DAG ledger
and may cause long con�rmation times. Therefore, we use GHOSTDAG only to implement the
reward mechanism of Qitmeer, since it should be acceptable for a miner to wait for a while to
get his or her mining reward. The con�rmation time for a transaction to be accepted is still
de�ned in the SPECTRE way.

3.3 Mining Algorithm

3.3.1 BlockDAG and Mining

BlockDAG’s collaboration model provides much more fairness than the competition model of
BlockChain on the protocol perspective. Every node gets rewards according to its contribution,
regardless of how much hash power it possess. Qitmeer favors fairness over the scalability
owing to the former is more in line with true spirit of blockchain. The intention of Nakamoto
Consensus is fair - every node votes with electricity; however, only a small bunch of the mining
pools have the odds to participate in consensus. solo miners su�er huge opportunity cost since
they have to wait for an uncertain time, quite long in most cases, to mine a block to cover their
cost; thus �nally it will have to turn to the mining pools. BlockDAG incorporates every miner’s
block, the miners have a strong expectation of their return and then discourage to join a mining
pool.

18

In addition, the mining algorithm is another factor of fairness. Mining fairness refers to a cer-
tain amount of mining cost, such as electricity in POW, should derive the relatively equivalent
amount of hash power. Practically, the ASIC mining rigs have much more mining e�ciency
than their prices.

3.3.2 Cuckoo-Cycle-PoW

Proof-of-Work(PoW) is used to con�rm transactions and produces new blocks, and acts as the
driving force in PoW based cryptocurrencies. PoW must not enable a participant to have a
signi�cant advantage over another participant. That is why Satoshi said: "Proof-of-work is
essentially one-CPU-one-vote."

However, most widely used proof-of-work algorithms, such as SHA-256, Blake2b, Scrypt, are
more e�cient on ASIC devices when compared to CPUs and GPUs. This can lead to ASIC
owners posses a much larger voting power than CPU and GPU owners, which violates the
“one-CPU-one-vote” principle.

Cuckoo-Cycle-PoW, a graph-theoretic proof-of-work algorithm/ASIC-Resistant, is designed to
�nd certain subgraphs in large pseudo-random graphs. This algorithm is ASIC resistant which
utilizes almost all parts of consumer-grade hardware in the (GPUs, Graphic Processing Unit),

The Cuckoo Cycle POW is designed to �nd certain subgraphs in large pseudo-random graphs.
In particular, Search for cycles of speci�ed length L in a bipartite graph with M edges of N nodes.
If a cycle is found and the hash di�culty is less than the target di�culty, the cuckoo cycle PoW
is completed.

Edge(Node) generation

For the sake of simplicity, we de�ne 32 edges for the bipartite graph. We call the SIPHASH
function twice to create two edge endpoints(U and V), with the �rst input value being 2 * nonce,
and the second 2 * nonce+1. The key for this function is based on a hash of a block header.

U = SIPHASH(headerHash, 2 ∗ nonce) mod 31 (1)

V = SIPHASH(headerHash, 2 ∗ nonce+ 1) mod 31 (2)

where,
0 ≤ nonce ≤ 31 (3)

it is any number between 0 and 31. Each nonce corresponds to two edge endpoints(U and V).

To throw 32 edges into a graph, randomly:

Edge Trimming

There is a special edge in bipartite graph, which is leaf edge, and could never be part of a cycle.
Leaf edge has a feature that the nodes it connects must have at least one node with the degree
of the nodes being one. By eliminating leaf edge in the bipartite graph, it could greatly reduce
the complexity of the graph, thus speeding up �nding cycle from the bipartite graph.

19

Figure 7: Building Nodes.

• Step 1: node 0, node 3 and node 10 are one degree nodes, eliminating the edge (0,13), (6,
3) and the edge (10,9).

• Step 2: node 9 and node 13 are one degree nodes, eliminating the edge (8,9) and the edge
(2,13).

• Step 3: node 8 is one degree nodes, eliminating the edge (8,11).

Cycle detection

After edge trimming, if a cycle of length L is found, we think we have found a solution to this
problem. we store the cycle edges in a set and put the nonce of the generated cycle in a set and
return as the result of cycle detection.

Di�culty control

The di�culty of �nding a cycle in the graph is proportional to M/N. Here M stands for edges
of the graph. N stands for nodes of the graph. However, the di�culty of �nding a cycle in the
graph change is not smooth. For crypto currencies, di�culty control must be scale in precisely
controlled manner. The usual practice is that the ratio of M/N remain �xed, such as M/N = 1/2.

Thus in the actual use, it also adds a hash di�culty control similar to Bitcoin. The digest of the
cycle nonces is obtained by a hash function, and then compared with the target di�culty.

3.4 Rewards

3.4.1 Transaction Collision

Due to asynchronous block submission, BlockDAG protocols inevitably incorporate repeating
transactions, called transaction collisions. Miners tend to pack the transaction with higher fees
to maximize their pro�t. This will result in high repetition rates of blocks. Repeated transactions
will not contribute to the throughput, what is more, low fee transactions would wait inde�nite
time to get con�rmed. In a fully decentralized network, nodes cannot coordinate each other

20

Figure 8: Trimming of edges which cannot be part of a cycle.

to avoid collision, leaving the only option to deivse a sophisticated incentive mechanism to
penalize the sel�sh mining behaviors.

The intuitive way to solve this challenge is to share the transaction fee, and this method will
make all the miners reach a Nash equilibrium that all the miners will choose transactions ran-
domly from their memory pools. This approach will considerably reduce transactions collision;
however, users can no longer pay higher fees to boost their transaction con�rmation.

Qitmeer appreciates Inclusive protocol work and adopts which states that this mechanism has
some security concerns due to the fact that it would not penalize those malicious parties who
mine blocks in private. Inclusive protocol �xes this problem by only giving rewards to blocks
which are not deviating from the main chain signi�cantly.

3.4.2 First Come First Serve

The miners will encourage to submit blocks immediately upon the creation of the transac-
tion. The transaction fee belongs to the �rst miner who initiated the transaction. However,
this reward mechanism requires transactions has a global order, which has been o�ered by
GHOSTDAG protocol.

Inclusive protocol states that this mechanism has some security concerns because it won’t pe-
nalize those malicious parities who mine blocks in private. Inclusive protocol �xes this problem
by only giving rewards to blocks not deviating main chain too much. Qitmeer appreciates In-
clusive protocol work and adopts it.

21

4 Protocols and Interoperability

BlockChain is the digital infrastructure for decentralized �nancial system, which would evolve
into a complete ecosystem in the course of reaching maturity. This session analyses the typical
applications available on Qitmeer network and the protocols for interaction with Qitmeer.

4.1 Mining Protocol

4.1.1 Proof-of-work Algorithm

The mining protocol is resistant to the centralization of mining power, which enables miner
utilize almost all parts of commodity hardware (GPUs, CPUs). Therefore, Qitmeer uses a Proof-
Of-Work algorithm called Cuckoo Cycle[11], a memory-hard algorithm. This algorithm is de-
signed to �nd certain subgraphs in large pseudo-random graphs. An introduction of Qitmeer
proof-of-work can be found here.[12]

4.1.2 Mining Protocol

Figure 9: Mining process.

Qitmeer supports getblocktemplate mining protocol. It make the miner to decide which transac-
tions are put in the block. The miner send a request to the Qitmeer full node by getblocktemplate
RPC.

1 {
2 " j s o n r p c " : " 2 . 0 " ,
3 " method " : " g e t B l o c k T e m p l a t e " ,
4 " params " : [
5 [
6 " ’ $ c a p a b i l i t i e s ’ "
7]
8] ,
9 " i d " : 1

10 }

getblocktemplate return a JSON Object.
1 {
2 " j s o n r p c " : " 2 . 0 " ,
3 " i d " : 1 ,
4 " r e s u l t " : {
5 " b i t s " : " 2 0 7 f f f f f " ,
6 " s t a t e r o o t " : " 0 " ,

22

7 " c u r t i m e " : 1 5 6 7 3 2 3 8 2 2 ,
8 " h e i g h t " : 6 ,
9 " p r e v i o u s b l o c k h a s h " : " 5 0 4 7 4 e 0 a 6 f 8 8 f 2 f 1 a e e 7 a 0 1 3 4 a 7 b e 4 b 6 e 5 a b 6 a 7 c 9 b a 4 4 0 b 6 c 1 1 c 5 4 4 9 4 c a 8 9 d 3 2 " ,

10 " s i g o p l i m i t " : 8 0 0 0 0 ,
11 " s i z e l i m i t " : 1 3 1 0 7 2 0 ,
12 " w e i g h t l i m i t " : 4 0 0 0 0 0 0 ,
13 " p a r e n t s " : [
14 {
15 " d a t a " : " 3 2 9 d a 8 4 c 4 9 5 4 1 c c 1 b 6 4 0 a 4 9 b 7 c 6 a a b e 5 b 6 e 4 7 b 4 a 1 3 a 0 e 7 a e f 1 f 2 8 8 6 f 0 a 4 e 4 7 5 0 " ,
16 " hash " : " 5 0 4 7 4 e 0 a 6 f 8 8 f 2 f 1 a e e 7 a 0 1 3 4 a 7 b e 4 b 6 e 5 a b 6 a 7 c 9 b a 4 4 0 b 6 c 1 1 c 5 4 4 9 4 c a 8 9 d 3 2 "
17 }
18] ,
19 " t r a n s a c t i o n s " : [] ,
20 " v e r s i o n " : 4 ,
21 " c o i n b a s e a u x " : {
22 " f l a g s " : " 0 9 2 f 7 1 6 9 7 4 6 d 6 5 6 5 7 2 2 f "
23 } ,
24 " c o i n b a s e v a l u e " : 4 5 0 0 0 0 0 0 0 0 0 ,
25 " l o n g p o l l i d " : " 5 0 4 7 4 e 0 a 6 f 8 8 f 2 f 1 a e e 7 a 0 1 3 4 a 7 b e 4 b 6 e 5 a b 6 a 7 c 9 b a 4 4 0 b 6 c 1 1 c 5 4 4 9 4 c a 8 9 d 3 2 1 5 6 7 3 2 3 8 2 2 " ,
26 " t a r g e t " : " 7 f f f f f 0 " ,
27 " maxtime " : 1 5 6 7 3 3 1 0 2 2 ,
28 " mintime " : 1 5 6 7 3 2 3 7 4 3 ,
29 " mutab le " : [
30 " t ime " ,
31 " t r a n s a c t i o n s / add " ,
32 " p r e v b l o c k " ,
33 " c o i n b a s e / append "
34] ,
35 " noncerange " : " 0 0 0 0 0 0 0 0 f f f f f f f f " ,
36 " c a p a b i l i t i e s " : [
37 " p r o p o s a l "
38]
39 }
40 }

Then the miner start PoW using the data from getblocktemplate RPC. If it get the right ’answer’,
submiting the potential block by submitblock RPC.

1 {
2 " j s o n r p c " : " 2 . 0 " ,
3 " i d " : 1 ,
4 " method " : " s u b m i t B l o c k " ,
5 " params " : [
6 " d a t a "
7]
8 }

4.1.3 Miner Capability

The Qitmeer-Miner supports both solo mining and pool mining.

Solo

If the miner decided to mine Qitmeer without joining a pool, he would launch Solo mining mode.
Solo miner connects one full node, call RPC service to mine blocks. Solo miner is recommended
GPU implementation to gain better e�ciency.

Pool

Qitmeer mining pools support stratum mining protocol as most PoW mining pools do. For
example:

miner.exe -o stratum+tcp://serverIp:3177 -m YourWalletAddress.YourMachineId

23

4.2 Wallet Protocol

4.2.1 Overview

The blockchain wallet itself does not store any digital currency, and is primarily a computer
program for creating digital currency transactions, tracking balances, and making it easy for
users to manage addresses and private keys. Wallet software is the foundation of the whole block
chain ecological development, any industry service can be realized through a block chain wallet
value, block chain technology itself will reconstruct the traditional Internet business model in
its own way.

Openness

An excellent blockchain public chain project should be more inclusive and open. Therefore, in
addition to its own o�cial wallet, Qitmeer has designed all interfaces and SDK for third-party
wallet development at the beginning of development. Third party wallet institutions can use
these interfaces to develop a variety of wallet programs that support Qitmeer Token transac-
tions. Including: HD wallet, SPV wallet, browser wallet to meet a variety of user needs.

How to create a wallet

The following is a simple wallet creation and transaction steps:

1. Generate seeder.

2. Derive private key.

3. Derive public key.

4. Derive address.

5. Monitor for outputs.

6. Create unsigned Transactions.

7. Sign Transactions.

8. Broadcast Transactions.

To complete the above operations, we need to rely on qitmeer’s Qitmeer SDK and RPC interface.
The Qitmeer SDK is a collection of tools that integrates various encryption, decryption, and
signature functions. We can use the Qitmeer SDK to develop the following functions:

1. Generate seeder.

2. Derive private key.

3. Derive public key.

4. Derive address.

5. Create unsigned Transactions.

6. Sign Transactions.

24

RPC is a http-based network interface, it’s easy to interact with qitmeer network. We can use
the Qitmeer SDK to develop the following functions:

1. Get block count from block dag or block chain.

2. Get block data with block height.

3. Gettransaction data with txid.

4. Gets all transaction data waiting for con�rmation.

5. Monitor for outputs.

6. Broadcast Txes.

4.3 Cross Chain

Qitmeer is dedicated to undertake the tokenized liquidity and host applications of global ecosys-
tem of Islamic �nance. Consequently the design goal of Qitmeer is to build up a simple and ro-
bust UTXO-based value transfer network, which prefers interoperability solutions to integrate
various blockchains and applications, such as smart contract. Eventually, they will be part of
Qitmeer’s ecosystem and can interact with each other.

4.3.1 UTXO interoperability

Currently, Qitmeer has supported P2SH script contracts and cross-chain functions through
hash-locking.

Process (BTC to MEER)

The implementation process of hash locking across the chain is:

1. Alice and Bob generate their addresses on ’MEER’ and ’BTC’ chains respectively;

2. Alice generates her own Secret Key and Secret Key hash;

3. Alice locks her ’MEER’ token into the hash-lock contract in the main chain of ’MEER’. The
unlocking condition is that Bob holds the Secret Key or returns it to Alice after exceeding
the speci�ed time;

4. Bob checks the contract of Alice’s main chain in ’MEER’ and uses Secret Key hash to
generate the corresponding contract in ’BTC’. The unlocking condition is that Alice holds
the Secret Key or returns it to Bob after the speci�ed time;

5. Alice uses Secret Key to take ’BTC’ locked by Bob from the hash-lock contract;

6. After obtaining Secret Key, Bob takes ’MEER’ locked by Alice from the hash-lock contract
and completes the transaction;

4.3.2 Smart Contract Interoperability

Qitmeer completes the cross- chain transaction between the block chain assets of Qitmeer and
other account models through hash lock Smart contract.

25

Figure 10: UTXO Atom Swap

Smart Contract Interoperability Process (ETH to MEER)

1. Alice and Bob generate their addresses on ’MEER’ and ’ETH’ chains respectively;

2. Alice generates her own Secret Key and Secret Key hash;

3. Alice locks her ’MEER’ token into the hash-lock contract in the main chain of ’MEER’. The
unlocking condition is that Bob holds the Secret Key or returns it to Alice after exceeding
the speci�ed time;

4. Bob checks the contract of Alice in the main chain of ’MEER’ and generates the corre-
sponding contract on ’ETH’ using Secret Key hash. The unlocking condition is that Alice
holds the Secret Key or returns it to Bob after exceeding the speci�ed time.

5. Alice uses Secret Key to call Smart Contract to take ’ETH’;

6. After obtaining Secret Key, Bob takes ’MEER’ locked by Alice in the hash-lock contract
and completes the transaction;

26

References

[1] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. .

[2] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. SPECTRE: Serialization of Proof-
of-work Events: Con�rming Transactions via Recursive Elections. h�ps://eprint.iacr.org/
2016/1159.pdf.

[3] Yonatan Sompolinsky and Aviv Zohar. PHANTOM, GHOSTDAG: Two Scalable BlockDAG
protocols. h�ps://eprint.iacr.org/2018/104.pdf.

[4] Ethereum is a global, open-source platform for decentralized applications. h�ps://www.
ethereum.org.

[5] Pay-to-Pubkey Hash. h�ps://en.bitcoinwiki.org/wiki/Pay-to-Pubkey_Hash.

[6] Colored Coins. h�ps://en.bitcoin.it/wiki/Colored_Coins.

[7] Tether: Fiat currencies on the Bitcoin blockchain. h�ps://tether.to/wp-content/uploads/
2016/06/TetherWhitePaper.pdf.

[8] Andrew Stone. BUIP077: Enable representative tokens via OP_GROUP on Bitcoin Cash.
h�ps://github.com/BitcoinUnlimited/BUIP/blob/master/077.mediawiki.

[9] Peer-to-Peer Electronic Cash. h�ps://www.bitcoincash.org/.

[10] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive Block Chain Protocols.
h�ps://www.cs.huji.ac.il/~yoni_sompo/pubs/15/inclusive_full.pdf.

[11] John Trump. Cuckoo Cycle: a memory bound graph-theoretic proof-of-work. h�ps://
github.com/tromp/cuckoo/blob/master/doc/cuckoo.pdf.

[12] The Qitmeer developers. Cuckoo Cycle POW, a Programmatic Proof-of-Work. h�ps://
github.com/Qitmeer/qips/blob/master/qips/qip-0005.asciidoc.

27

https://eprint.iacr.org/2016/1159.pdf
https://eprint.iacr.org/2016/1159.pdf
https://eprint.iacr.org/2018/104.pdf
https://www.ethereum.org
https://www.ethereum.org
https://en.bitcoinwiki.org/wiki/Pay-to-Pubkey_Hash
https://en.bitcoin.it/wiki/Colored_Coins
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://github.com/BitcoinUnlimited/BUIP/blob/master/077.mediawiki
https://www.bitcoincash.org/
https://www.cs.huji.ac.il/~yoni_sompo/pubs/15/inclusive_full.pdf
https://github.com/tromp/cuckoo/blob/master/doc/cuckoo.pdf
https://github.com/tromp/cuckoo/blob/master/doc/cuckoo.pdf
https://github.com/Qitmeer/qips/blob/master/qips/qip-0005.asciidoc
https://github.com/Qitmeer/qips/blob/master/qips/qip-0005.asciidoc

	Introduction
	Background
	Classical Blockchain Setting
	Openness
	Fairness
	Secure
	Scalable

	Specification
	Openess
	Fairness
	Security
	Scalability

	Qitmeer Token Design
	Background
	Problem definition
	Related works

	OP_TOKEN Design
	Overview
	Issuance of License
	Warrant a license
	Issuance of assets
	Transfer of the Assets
	Melt Token

	Consensus Protocol
	From BlockChain To BlockDAG
	Consensus
	SPECTRE
	GHOSTDAG

	Mining Algorithm
	BlockDAG and Mining
	Cuckoo-Cycle-PoW

	Rewards
	Transaction Collision
	First Come First Serve

	Protocols and Interoperability
	Mining Protocol
	Proof-of-work Algorithm
	Mining Protocol
	Miner Capability

	Wallet Protocol
	Overview

	Cross Chain
	UTXO interoperability
	Smart Contract Interoperability

